论文标题

带有Borel稳定线的还原基团的不可还原模块

Irreducible Modules of Reductive Groups with Borel-stable Line

论文作者

Chen, Xiaoyu

论文摘要

令$ p $为素数,$ \ bbbk = \ bar {\ mathbb {f}} _ p $,有限字段$ \ mathbb {f} _p $ p $ elements的代数关闭。令$ {\ bf g} $为$ \ mathbb {f} _p $和$ {\ bf b} $定义的连接还原组为$ {\ bf g} $的孔子子组(不一定在$ \ thebb {f} _p $上定义为$ {\ bf g} $)。我们表明,对于$ {\ bf b} $的每个(一维)$θ$(不一定是理性的),都有一个唯一的(不可记录的)$ \ bbbk {\ bf g} $ - 模块 - 模块 - module $ \ mathbb {l}(θ) b} $ - 子模块,此外,$ \ mathbb {l}(θ)$是同构对抛物线诱导的同构,来自有限维的$ \ bbbk {\ bf l} $ - 用于某些LEVI子组$ $ {\ bf l} $ {\ bf l} $ of $ {\ bf l} $的模块。因此,我们已经对所有(摘要)$ \ bbbk {\ bf g} $ - 带有$ {\ bf b} $稳定线的模块(即一维$ \ bbbk {\ bf bf b b} $ - suppoule)。作为副产品,我们给出了一个新的证据,证明了borel的结果和山雀,以分类有限维$ \ bbbk {\ bf g} $ - 模块。

Let $p$ be a prime number and $\Bbbk=\bar{\mathbb{F}}_p$, the algebraic closure of the finite field $\mathbb{F}_p$ of $p$ elements. Let ${\bf G}$ be a connected reductive group defined over $\mathbb{F}_p$ and ${\bf B}$ be a Borel subgroup of ${\bf G}$ (not necessarily defined over $\mathbb{F}_p$). We show that for each (one-dimensional) character $θ$ of ${\bf B}$ (not necessarily rational), there is a unique (up to isomorphism) irreducible $\Bbbk{\bf G}$-module $\mathbb{L}(θ)$ containing $θ$ as a $\Bbbk{\bf B}$-submodule, and moreover, $\mathbb{L}(θ)$ is isomorphic to a parabolic induction from a finite-dimensional irreducible $\Bbbk{\bf L}$-module for some Levi subgroup ${\bf L}$ of ${\bf G}$. Thus, we have classified and constructed all (abstract) irreducible $\Bbbk{\bf G}$-modules with ${\bf B}$-stable line (i.e. an one-dimensional $\Bbbk{\bf B}$-submodule). As a byproduct, we give a new proof of a result of Borel and Tits on the classification of finite-dimensional irreducible $\Bbbk{\bf G}$-modules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源