论文标题

恒星形成星系中的集中浓缩的分子气体驱动银河尺度的电离气体流出

Centrally concentrated molecular gas driving galactic-scale ionised gas outflows in star-forming galaxies

论文作者

Hogarth, L. M., Saintonge, A., Cortese, L., Davis, T. A., Croom, S. M., Bland-Hawthorn, J., Brough, S., Bryant, J. J., Catinella, B., Fletcher, T. J., Groves, B., Lawrence, J. S., Lopez-Sanchez, A. R., Owers, M. S., Richards, S. N., Roberts-Borsani, G. W., Taylor, E. N., van de Sande, J., Scott, N.

论文摘要

我们对高空间分辨率分子气体和恒星形成率(SFR)图(SFR)图(SFR)的联合分析,在恒星形成的星系中,经历了离子气体的银河系流出的流出。我们的目的是了解确定哪些星系能够发射这些强风的机制。我们在16个边缘星系中与Alma分辨率以1英寸的分辨率观察CO(1-0),从SAMI Galaxy调查中也具有2英寸的空间分辨率光学集成场观测值。样品中的一半星系先前被确定为具有电离气体(“流出类型”)的强烈和大规模流出的流出,其余的是对照星系。该数据集通过IRAM 30米望远镜的综合CO(1-0)观测值补充,以探测总分子气体储量。我们发现,与对照样品相比,为流出提供动力的星系没有明显不同的全球气体部分或恒星形成效率。然而,ALMA地图表明,流出类型星系中的分子气体比对照星系中的分布更为集中。对于我们的流出型物体,分子气体和星形形成在很大程度上限制在其内部有效半径内($ \ rm r_ {eff} $),而在控制样本中,分布较大,延伸远远超过$ \ rm r_ {eff} $。我们推断出正常的星形星系中流出可能是由动态机制引起的,这些机制将分子气进入其中心区域,这可能导致局部增强气体表面密度和恒星形成。

We perform a joint-analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionised gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1-0) at 1" resolution with ALMA in 16 edge-on galaxies, which also have 2" spatial resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionised gas ("outflow-types"), the rest serve as control galaxies. The dataset is complemented by integrated CO(1-0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation is largely confined within their inner effective radius ($\rm r_{eff}$), whereas in the control sample the distribution is more diffuse, extending far beyond $\rm r_{eff}$. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally-enhanced gas surface density and star-formation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源