论文标题
2D和3D约束Willmore流的扩散 - 还原方案:应用于囊泡的平衡形状
Diffusion-redistanciation schemes for 2D and 3D constrained Willmore flow: application to the equilibrium shapes of vesicles
论文作者
论文摘要
在本文中,我们提出了一种用于模拟几何流动的新型算法,尤其是Willmore流量,并保存体积和面积。这个想法是在两个和三个维度中将扩散重新延伸算法的类别调整为Willmore流。这些算法依赖于签名距离函数的交替扩散到界面和重新构成步骤,并且在仔细选择应用的扩散的情况下,最终将距离函数的零水平集通过一些几何数量移动,而无需求助于任何显式传输方程。通过简单的重新缩放方法,在扩散和重新存在步骤之间实施了约束。在每个全球步骤结束时,全球能量在全球范围内减少。该算法具有阈值方法的计算效率,而不需要任何自适应重新安排,这要归功于使用签名的距离函数来描述接口。这为大型且现实的病例开放了他们在动态流体结构模拟中的应用。通过计算二维和三维囊泡以及克利福德圆环的平衡形状来验证该方法。
In this paper we present a novel algorithm for simulating geometrical flows, and in particular the Willmore flow, with conservation of volume and area. The idea is to adapt the class of diffusion-redistanciation algorithms to the Willmore flow in both two and three dimensions. These algorithms rely on alternating diffusions of the signed distance function to the interface and a redistanciation step, and with careful choice of the applied diffusions, end up moving the zero level-set of the distance function by some geometrical quantity without resorting to any explicit transport equation. The constraints are enforced between the diffusion and redistanciation steps via a simple rescaling method. The energy globally decreases at the end of each global step. The algorithms feature the computational efficiency of thresholding methods without requiring any adaptive remeshing thanks to the use of a signed distance function to describe the interface. This opens their application to dynamic fluid-structure simulations for large and realistic cases. The methodology is validated by computing the equilibrium shapes of two- and three-dimensional vesicles, as well as the Clifford torus.