论文标题
Goulden-Jackson群集定理的应用
An application of the Goulden-Jackson cluster theorem
论文作者
论文摘要
让A为字母,让F为A中的字母。我们表明,所有单词的总和在f中没有连续子字中没有连续的子字,作为非承诺变量中的正式功率系列,是所有系数的倒数,所有系数为0、1或-1。我们还解释了该结果与Möbius函数0、1或-1的晶格上Curtis Greene的结果有关。
Let A be an alphabet and let F be a set of words with letters in A. We show that the sum of all words with letters in A with no consecutive subwords in F, as a formal power series in noncommuting variables, is the reciprocal of a series with all coefficients 0, 1 or -1. We also explain how this result is related to a result of Curtis Greene on lattices with Möbius function 0, 1, or -1.