论文标题

非交换性$ c^k $函数和操作员功能的fréchet衍生物

Noncommutative $C^k$ functions and Fréchet derivatives of operator functions

论文作者

Nikitopoulos, Evangelos A.

论文摘要

修复一个Unital $ c^*$ - 代数$ \ Mathscr {a} $,并为$ \ Mathscr {a} $的sexwaxhixhodAdexhighatchoint Elements编写$ \ Mathscr {a} _ {sa} $。另外,如果$ f:\ mathbb {r} \ to \ mathbb {c} $是一个连续的函数,则写入$ f_ \ m mathscr {a}:\ mathscr {a} _ {sa} _ {sa} \ to \ to \ to \ to \ to \ nato \ a} $ a \ mapsto $ a \ mapsto f(a a)在本文中,我们介绍和研究$ c^k $ functions $ nc^k(\ mathbb {r})$ f:\ mathbb {r} \ to \ mathbb {c} $,无论如何选择$ \ mathscr {a} $, $ f_ \ mathscr {a}:\ Mathscr {a} _ {sa} \ to \ mathscr {a} $是$ k $ - times nimes visherfréchet。换句话说,如果$ f \ in nc^k(\ mathbb {r})$,则$ f $“ lifts”到a $ c^k $ map $ f_ \ mathscr {a}:\ mathscr {a} _ {sa} _ {sa} _ {sa} \ to \ mathscr {a} $ for \ mathscr {a} $,y Mathscr {a} $, $ \ mathscr {a} $。因此,我们称$ nc^k(\ mathbb {r})$是非交换$ c^k $ functions的空间。我们的证明表明$ f_ \ Mathscr {a} \ in C^k(\ Mathscr {a} _ {sa}; \ Mathscr {a})$,它仅需要对“多项运算符元素”的fréchet衍生物的知识(MOIS比较元素)(MOIS)(MOIS),是标准方法(MOIS),是标准方法,是标准方法的。尽管如此,$ nc^k(\ mathbb {r})$包含所有可比较结果的功能。具体而言,我们证明$ nc^k(\ m athbb {r})$包含同质的besov space $ \ dot {b} _1^{k,\ infty}(\ mathbb {r}但是,我们强调的是,本文的结果是其类型的第一个被证明用于任意Unital $ c^*$ - 代数,并且这种一般环境的扩展利用了作者最近解决MOI定义的某些“可分离性问题”的解决方案。最后,我们通过展示特定示例来证明$ W_K(\ Mathbb {r})_ {loc} \ subsetNeq nc nc^k(\ m athbb {r})\ subsetneq c^k(\ subsetneq c^k(\ supbbb {r}) $ k^{th} $ Wiener空间。

Fix a unital $C^*$-algebra $\mathscr{A}$, and write $\mathscr{A}_{sa}$ for the set of self-adjoint elements of $\mathscr{A}$. Also, if $f:\mathbb{R}\to\mathbb{C}$ is a continuous function, then write $f_\mathscr{A}:\mathscr{A}_{sa}\to\mathscr{A}$ for the operator function $a\mapsto f(a)$ defined via functional calculus. In this paper, we introduce and study a space $NC^k(\mathbb{R})$ of $C^k$ functions $f:\mathbb{R}\to\mathbb{C}$ such that, no matter the choice of $\mathscr{A}$, the operator function $f_\mathscr{A}:\mathscr{A}_{sa}\to\mathscr{A}$ is $k$-times continuously Fréchet differentiable. In other words, if $f\in NC^k(\mathbb{R})$, then $f$ "lifts" to a $C^k$ map $f_\mathscr{A}:\mathscr{A}_{sa}\to\mathscr{A}$, for any (possibly noncommutative) unital $C^*$-algebra $\mathscr{A}$. For this reason, we call $NC^k(\mathbb{R})$ the space of noncommutative $C^k$ functions. Our proof that $f_\mathscr{A}\in C^k(\mathscr{A}_{sa};\mathscr{A})$, which requires only knowledge of the Fréchet derivatives of polynomials and operator norm estimates for "multiple operator integrals" (MOIs), is more elementary than the standard approach; nevertheless, $NC^k(\mathbb{R})$ contains all functions for which comparable results are known. Specifically, we prove that $NC^k(\mathbb{R})$ contains the homogeneous Besov space $\dot{B}_1^{k,\infty}(\mathbb{R})$ and the Hölder space $C_{loc}^{k,\varepsilon}(\mathbb{R})$. We highlight, however, that the results in this paper are the first of their type to be proven for arbitrary unital $C^*$-algebras, and that the extension to such a general setting makes use of the author's recent resolution of certain "separability issues" with the definition of MOIs. Finally, we prove by exhibiting specific examples that $W_k(\mathbb{R})_{loc}\subsetneq NC^k(\mathbb{R})\subsetneq C^k(\mathbb{R})$, where $W_k(\mathbb{R})_{loc}$ is the "localized" $k^{th}$ Wiener space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源