论文标题
与异性贝叶斯神经网络的减少订购火焰模型中的实时参数推断
Real-time parameter inference in reduced-order flame models with heteroscedastic Bayesian neural network ensembles
论文作者
论文摘要
从观察到的数据中对模型参数的估计是科学和工程中无处不在的逆问题。在本文中,我们建议一种廉价且易于实现的参数估计技术,该技术使用了使用锚定结合训练的异质贝叶斯神经网络。网络的异质分析误差模拟了由于我们的反问题中的参数变性引起的不确定性,而贝叶斯模型的认知不确定性捕获了不确定性,这可能是由于输入观察的分布性质而引起的。我们使用此工具在观测到声激发火焰的观察结果中,在6个参数G-方程模型中执行实时参数推断。我们在210万个模拟火焰视频的库上训练网络。模拟火焰的测试数据集上的结果表明,网络恢复了火焰模型参数,预测参数和真实参数之间的相关系数范围为0.97至0.99,并且不确定性的不确定性估计值良好。然后使用训练有素的神经网络从我们的实验室中使用高速相机捕获的预混合Bunsen火焰的真实视频来推断模型参数。使用推断参数的重新仿真显示了真实火焰和模拟火焰之间的良好一致性。与在燃烧文献中针对此问题提出的基于Kalman滤波器的集合滤波器工具相比,我们的神经网络合奏实现了更好的数据效率,我们的子毫秒推理时间代表了几个数量级的计算成本节省。这使我们能够实时校准减少的火焰模型,并更准确地预测火焰的热声不稳定性行为。
The estimation of model parameters with uncertainties from observed data is a ubiquitous inverse problem in science and engineering. In this paper, we suggest an inexpensive and easy to implement parameter estimation technique that uses a heteroscedastic Bayesian Neural Network trained using anchored ensembling. The heteroscedastic aleatoric error of the network models the irreducible uncertainty due to parameter degeneracies in our inverse problem, while the epistemic uncertainty of the Bayesian model captures uncertainties which may arise from an input observation's out-of-distribution nature. We use this tool to perform real-time parameter inference in a 6 parameter G-equation model of a ducted, premixed flame from observations of acoustically excited flames. We train our networks on a library of 2.1 million simulated flame videos. Results on the test dataset of simulated flames show that the network recovers flame model parameters, with the correlation coefficient between predicted and true parameters ranging from 0.97 to 0.99, and well-calibrated uncertainty estimates. The trained neural networks are then used to infer model parameters from real videos of a premixed Bunsen flame captured using a high-speed camera in our lab. Re-simulation using inferred parameters shows excellent agreement between the real and simulated flames. Compared to Ensemble Kalman Filter-based tools that have been proposed for this problem in the combustion literature, our neural network ensemble achieves better data-efficiency and our sub-millisecond inference times represent a savings on computational costs by several orders of magnitude. This allows us to calibrate our reduced-order flame model in real-time and predict the thermoacoustic instability behaviour of the flame more accurately.