论文标题

使用逐步的边界条件进行偏置非局部非线性schrödinger方程:转移的初始数据的长期行为

Defocusing nonlocal nonlinear Schrödinger equation with step-like boundary conditions: long-time behavior for shifted initial data

论文作者

Rybalko, Yan, Shepelsky, Dmitry

论文摘要

本文介绍了可通过非本地非线性schrödinger方程$的可集成散落的初始值问题的长期渐近分析。 iq_ {t}(x,t) +q_ {xx}(x,x,t)-2 q^{2}(x,x,x,t)\ bar {q}( - x,x,t)= 0 $,带有逐步的初始数据:$ q(x,0)\ to $ q(x,0)\ to 0 $ x \ to $ x \ to-x \ to- \ fty $ x \ fty $和$ q infty和$ q(x(x)由于方程不是翻译不变的,因此该问题的解决方案对初始数据的变化敏感。我们考虑一个问题家族,参数为$ r> 0 $,其初始数据可以视为“移动步骤函数”的扰动。我们表明,在$(x,t)$平面的部门中,渐近学在质量上有所不同,其数量取决于$ a $ a $ a $ $ $:对于固定的$ a $,较大的$ r $,较大的扇区。此外,可以将扇区收集到2个替代组中:在第一组的扇区中,解决方案衰减至0,而在第二组的扇区中,解决方案接近常数(随$ x/t = const $而变化)。

The present paper deals with the long-time asymptotic analysis of the initial value problem for the integrable defocusing nonlocal nonlinear Schrödinger equation $ iq_{t}(x,t)+q_{xx}(x,t)-2 q^{2}(x,t)\bar{q}(-x,t)=0 $ with a step-like initial data: $q(x,0)\to 0$ as $x\to -\infty$ and $q(x,0)\to A$ as $x\to +\infty$. Since the equation is not translation invariant, the solution of this problem is sensitive to shifts of the initial data. We consider a family of problems, parametrized by $R>0$, with the initial data that can be viewed as perturbations of the "shifted step function" $q_{R,A}(x)$: $q_{R,A}(x)=0$ for $x<R$ and $q_{R,A}(x)=A$ for $x>R$, where $A>0$ and $R>0$ are arbitrary constants. We show that the asymptotics is qualitatively different in sectors of the $(x,t)$ plane, the number of which depends on the relationship between $A$ and $R$: for a fixed $A$, the bigger $R$, the larger number of sectors. Moreover, the sectors can be collected into 2 alternate groups: in the sectors of the first group, the solution decays to 0 while in the sectors of the second group, the solution approaches a constant (varying with the direction $x/t=const$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源