论文标题
在Fe/MgO界面上揭开垂直磁各向异性的温度依赖机制
Unveiling temperature dependence mechanisms of perpendicular magnetic anisotropy at Fe/MgO interfaces
论文作者
论文摘要
磁性金属/氧化物界面处的垂直磁各向异性(PMA)是构建平面外磁性磁性隧道连接连接的关键要素,用于自旋转移磁力磁性随机访问记忆(STT-MRAM)。尺寸降尺度使磁性特性对热效应更敏感。因此,了解磁各向异性的温度依赖性至关重要。在这项工作中,我们从理论上解决了典型的基于Fe/Mgo的结构中PMA和磁化温度依赖性之间的相关性。特别是,分析了报道Callen和Callen缩放能力定律的实验背后的可能机制。在理想界面上,第一原理计算显示(i)与一阶和(ii)增强的交换常数相比,小型高阶各向异性常数。考虑到原子模拟中的这两个固有效应,发现总和层分辨的各向异性的温度依赖性遵循Callen和Callen缩放能力定律,因此排除了与该法律偏差的内在显微镜机制。此外,揭示了两个可能的外部宏观机制,即死层的影响,通常存在于Stt-MRAM细胞的存储层中,以及界面磁各向异性的空间不均匀性。关于第一个机制,我们表明死亡层的存在倾向于减少缩放指数。在第二个机制中,揭示了界面PMA中不均匀性的百分比,以减少缩放指数。这些结果使我们可以解释与早期实验中报告的各向异性和磁化热变化有关的缩放指数的差异。这对于理解STT-MRAM应用中存储层磁化的热稳定性至关重要。
The perpendicular magnetic anisotropy (PMA) at magnetic transition metal/oxide interfaces is a key element in building out-of-plane magnetized magnetic tunnel junctions for spin-transfer-torque magnetic random access memory (STT-MRAM). Size downscaling renders magnetic properties more sensitive to thermal effects. Thus, understanding the temperature dependence of the magnetic anisotropy is crucial. In this work, we theoretically address the correlation between temperature dependence of PMA and magnetization in typical Fe/MgO-based structures. In particular, the possible mechanisms behind the experiments reporting deviations from the Callen and Callen scaling power law are analyzed. At ideal interfaces, first-principles calculations reveal (i) small high-order anisotropy constants compared to first order and (ii) enhanced exchange constants. Considering these two intrinsic effects in the atomistic simulations, the temperature-dependence of the total and layer-resolved anisotropy are found to follow the Callen and Callen scaling power law, thus ruling out an intrinsic microscopic mechanism underlying deviations from this law. Besides, two possible extrinsic macroscopic mechanisms are unveiled namely the influence of the dead layer, often present in the storage layer of STT-MRAM cells, and the spatial inhomogeneities of the interfacial magnetic anisotropy. About the first mechanism, we show that the presence of a dead layer tends to reduce the scaling exponents. In the second mechanism, increasing the percentage of inhomogeneity in the interfacial PMA is revealed to decrease the scaling exponent. These results allow us to explain the difference in scaling exponents relating anisotropy and magnetization thermal variations reported in earlier experiments. This is crucial for the understanding of the thermal stability of the storage layer magnetization in STT-MRAM applications.