论文标题

社交联系网络中爆发检测和跟踪的自适应测试分配

Adaptive Test Allocation for Outbreak Detection and Tracking in Social Contact Networks

论文作者

Batlle, Pau, Bruna, Joan, Fernandez-Granda, Carlos, Preciado, Victor M.

论文摘要

我们提出了一个通用框架,用于在社交接触网络中自适应分配病毒测试。我们提出并解决了一些互补问题。首先,我们考虑了一种社会传感系统的设计,该系统的目标是对新型流行病爆发的早期发现。特别是,我们提出了一种算法来选择要测试的个体的子集,以便尽可能快地检测流行病爆发的发作。我们将这个问题作为打击时间概率最大化问题,并使用suppodulodility优化技术为提出的解决方案提供明确的质量保证。其次,一旦发现流行病爆发,我们就会考虑随着时间的推移自适应分布病毒测试的问题,以最大程度地提高有关流行病的当前状态的信息。我们从信息熵和相互信息方面正式化了这个问题,并提出了具有质量保证的自适应分配策略。对于这些问题,我们为具有马尔可夫动力学的任何随机隔室流行模型提供了分析解决方案,以及用于非马克维亚动力学的有效基于蒙特卡洛的算法。最后,我们在数值实验中说明了所提出的框架的性能,该框架涉及应用于真实人类接触网络的COVID-19模型。

We present a general framework for adaptive allocation of viral tests in social contact networks. We pose and solve several complementary problems. First, we consider the design of a social sensing system whose objective is the early detection of a novel epidemic outbreak. In particular, we propose an algorithm to select a subset of individuals to be tested in order to detect the onset of an epidemic outbreak as fast as possible. We pose this problem as a hitting time probability maximization problem and use submodularity optimization techniques to derive explicit quality guarantees for the proposed solution. Second, once an epidemic outbreak has been detected, we consider the problem of adaptively distributing viral tests over time in order to maximize the information gained about the current state of the epidemic. We formalize this problem in terms of information entropy and mutual information and propose an adaptive allocation strategy with quality guarantees. For these problems, we derive analytical solutions for any stochastic compartmental epidemic model with Markovian dynamics, as well as efficient Monte-Carlo-based algorithms for non-Markovian dynamics. Finally, we illustrate the performance of the proposed framework in numerical experiments involving a model of Covid-19 applied to a real human contact network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源