论文标题

近似基于影响的抽象的损失界限

Loss Bounds for Approximate Influence-Based Abstraction

论文作者

Congeduti, Elena, Mey, Alexander, Oliehoek, Frans A.

论文摘要

顺序决策技术具有巨大的希望,可以提高许多现实世界系统的性能,但是计算复杂性阻碍了其原则上的应用。基于影响力的抽象旨在通过对当地子问题进行建模以及系统对其施加的“影响”的“影响”来获得杠杆作用。虽然计算这种影响的精确表示可能是棘手的,但学习近似表示提供了一种有希望的方法来启用可扩展解决方案。本文从理论的角度研究了这种方法的表现。主要的贡献是在近似影响表示方面衍生足够的条件,可以保证具有较小价值损失的解决方案。特别是我们表明,接受跨熵训练的神经网络非常适合学习近似影响表示。此外,我们提供了基于样本的界限公式,从而减少了应用程序的差距。最后,在我们的理论见解的驱动下,我们提出了近似误差估计器,从经验上揭示了与价值损失良好相关的。

Sequential decision making techniques hold great promise to improve the performance of many real-world systems, but computational complexity hampers their principled application. Influence-based abstraction aims to gain leverage by modeling local subproblems together with the 'influence' that the rest of the system exerts on them. While computing exact representations of such influence might be intractable, learning approximate representations offers a promising approach to enable scalable solutions. This paper investigates the performance of such approaches from a theoretical perspective. The primary contribution is the derivation of sufficient conditions on approximate influence representations that can guarantee solutions with small value loss. In particular we show that neural networks trained with cross entropy are well suited to learn approximate influence representations. Moreover, we provide a sample based formulation of the bounds, which reduces the gap to applications. Finally, driven by our theoretical insights, we propose approximation error estimators, which empirically reveal to correlate well with the value loss.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源