论文标题

椭圆毛毛毛曲的规范型号

Canonical models for torus canards in elliptic bursters

论文作者

Baspinar, Emre, Avitabile, Daniele, Desroches, Mathieu

论文摘要

我们从圆环解决方案的角度重新访问椭圆爆发动力学。我们表明,在向椭圆形爆发的过渡中,可以出现经典或混合型的圆环牛肉,两者之间的差异是它们接近的快速子系统分叉,前者的循环和亚临界跳跃的鞍形节点。我们首先在Wilson-Cowan型椭圆爆发模型中展示了这种动力学,然后考虑到通过两种圆环牛排找到往返爆发解决方案的过渡,我们考虑了最小的椭圆囊毛模型。我们首先考虑Izhikevich(手稿中的参考[22])提出的规范模型,并适用于JU,Neiman,Neiman,Shilnikov(手稿中的参考文献[24])的椭圆形爆发,我们表明,由于爆发的一个爆发的过渡性,它并没有产生较大的混合型奶油酱。因此,我们在慢速方程式中引入了一个扰动术语,该术语将这种规范形式扩展到了我们称为Leidenator的新形式,并分别通过经典和混合型圆环大麻来支持与椭圆形爆发的正确过渡。在整个研究中,我们使用单数流($ \ varepsilon = 0 $)来预测完整系统的动力学($ \ varepsilon> 0 $足够小)。我们考虑三个单一的流动:缓慢,快速和平均缓慢,以便适当地构建与与椭圆形爆发和圆环凸轮有关的所有相关动力学相对应的奇异轨道。

We revisit elliptic bursting dynamics from the viewpoint of torus canard solutions. We show that at the transition to and from elliptic burstings, classical or mixed-type torus canards can appear, the difference between the two being the fast subsystem bifurcation that they approach, saddle-node of cycles for the former and subcritical Hopf for the latter. We first showcase such dynamics in a Wilson-Cowan type elliptic bursting model, then we consider minimal models for elliptic bursters in view of finding transitions to and from bursting solutions via both kinds of torus canards. We first consider the canonical model proposed by Izhikevich (ref. [22] in the manuscript) and adapted to elliptic bursting by Ju, Neiman, Shilnikov (ref. [24] in the manuscript), and we show that it does not produce mixed-type torus canards due to a nongeneric transition at one end of the bursting regime. We therefore introduce a perturbative term in the slow equation, which extends this canonical form to a new one that we call Leidenator and which supports the right transitions to and from elliptic bursting via classical and mixed-type torus canards, respectively. Throughout the study, we use singular flows ($\varepsilon=0$) to predict the full system's dynamics ($\varepsilon>0$ small enough). We consider three singular flows: slow, fast and average slow, so as to appropriately construct singular orbits corresponding to all relevant dynamics pertaining to elliptic bursting and torus canards.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源