论文标题
量子旋转系统的多曲线伪屈服函数重归其化:应用于旋转 - $ \ frac {1} {2} $ kagome Heisenberg模型
Multiloop pseudofermion functional renormalization for quantum spin systems: Application to the spin-$\frac{1}{2}$ kagome Heisenberg model
论文作者
论文摘要
我们为量子自旋系统提出了多杆假屈服功能重新归一化组(PFFRG)方法。作为测试案例,我们研究了Kagome Lattice上的自旋 - $ \ tfrac {1} {2} $ HEISENBERG模型,这是据信载有量子自旋液体的几何沮丧磁铁的典型例子。我们的主要物理结果是,在纯净的最近邻邻耦合下,该系统显示出代数旋转液体的指示,其指数衰减较慢,距离静态旋转易感性较慢,而静态自旋易感性,而伪柔性自我能够自动化发展,从而发展出吸引人的低功能。从方法论上讲,自旋模型的假屈服表示固有地产生了强烈的相互作用系统,截断的FRG流的定量可靠性\ textit {a先验}不清楚。我们的主要技术结果是在MultiLoop PFFRG中循环编号的收敛演示。通过与自洽的镶木程方程的通信,这为方法的内部一致性提供了进一步的证据。伪金顶点的收敛所需的循环顺序相当大,但是旋转易感性更为良性,几乎完全融合了循环订单$ \ ell \ geq 5 $。由于红外截止$λ$相对于微观交换交互$ j $减少,因此多列流量保持稳定,从而使我们能够在旋转液体阶段达到次级级别的$λ/j $的值。相比之下,对于低$λ/j $,通过直接定点迭代求解镶木quet方程变得越来越困难。我们还通过明确计算费米昂数量的波动来审查每个站点单位单位的伪层约束,只有在PFFRG中才能实现。尽管后者并未完全抑制,但我们发现它们不会影响旋转易感性得出的定性结论。
We present a multiloop pseudofermion functional renormalization group (pffRG) approach to quantum spin systems. As a test case, we study the spin-$\tfrac{1}{2}$ Heisenberg model on the kagome lattice, a prime example of a geometrically frustrated magnet believed to host a quantum spin liquid. Our main physical result is that, at pure nearest-neighbor coupling, the system shows indications for an algebraic spin liquid through slower-than-exponential decay with distance for the static spin susceptibility, while the pseudofermion self-energy develops intriguing low-energy features. Methodologically, the pseudofermion representation of spin models inherently yields a strongly interacting system, and the quantitative reliability of a truncated fRG flow is \textit{a priori} unclear. Our main technical result is the demonstration of convergence in loop number within multiloop pffRG. Through correspondence with the self-consistent parquet equations, this provides further evidence for the internal consistency of the approach. The loop order required for convergence of the pseudofermion vertices is rather large, but the spin susceptibility is more benign, appearing almost fully converged for loop orders $\ell \geq 5$. The multiloop flow remains stable as the infrared cutoff $Λ$ is reduced relative to the microscopic exchange interaction $J$, allowing us to reach values of $Λ/J$ on the subpercent level in the spin-liquid phase. By contrast, solving the parquet equations via direct fixed-point iteration becomes increasingly difficult for low $Λ/J$. We also scrutinize the pseudofermion constraint of single occupation per site, which is only fulfilled on average in pffRG, by explicitly computing fermion-number fluctuations. Although the latter are not entirely suppressed, we find that they do not affect the qualitative conclusions drawn from the spin susceptibility.