论文标题

广泛的负载平衡和聚类问题,并最小化

Generalized Load Balancing and Clustering Problems with Norm Minimization

论文作者

Deng, Shichuan

论文摘要

在许多基本的组合优化问题中,可行的解决方案诱导一些实际的成本向量作为中间结果,而优化目标是向量的一定功能。例如,在不相关的平行机上最小化MakePAN的问题时,可行的工作分配会导致一个载体,其中包含每台机器分配的作业尺寸的矢量,目标是最大程度地减少$ l_ \ infty $ narm of $ l_1 $ l_1 $。另一个示例是容忍$ k $ - 中心,每个客户端都连接到多个开放设施,因此与这些设施有距离的距离,目标是最大程度地减少这些向量的$ L_ \ infty $ norm of $ l_ \ l_ \ infty $ norms。在本文中,我们研究规范问题的最大问题。给定任意的对称单调标准$ f $,该目标定义为诱导成本向量的$ f $ norm值的最大值($ l_ \ infty $ norm)。这种多功能的配方捕获了各种各样的问题,包括MakePan最小化,容忍故障的$ K $ - 中心等。我们为无关平行机和聚类问题的负载平衡提供了具体的结果,包括当$ f $属于某些富裕的规范家族时,包括恒定因素近似算法,以及$ o(\ log n)$ - $ f $时,$ f $是一般并满足某些假设。我们还考虑了公平环境中上述问题。作为一个具体的示例,洞察力是防止调度算法在工作重新调查的情况下在任何机器上始终如一地分配太多作业,并导致机器的控制器失败。我们的算法需要随机输出可行的解决方案最小化目标函数,并满足给定的边际公平约束。

In many fundamental combinatorial optimization problems, a feasible solution induces some real cost vectors as an intermediate result, and the optimization objective is a certain function of the vectors. For example, in the problem of makespan minimization on unrelated parallel machines, a feasible job assignment induces a vector containing the sizes of assigned jobs for each machine, and the goal is to minimize the $L_\infty$ norm of $L_1$ norms of the vectors. Another example is fault-tolerant $k$-center, where each client is connected to multiple open facilities, thus having a vector of distances to these facilities, and the goal is to minimize the $L_\infty$ norm of $L_\infty$ norms of these vectors. In this paper, we study the maximum of norm problem. Given an arbitrary symmetric monotone norm $f$, the objective is defined as the maximum ($L_\infty$ norm) of $f$-norm values of the induced cost vectors. This versatile formulation captures a wide variety of problems, including makespan minimization, fault-tolerant $k$-center and many others. We give concrete results for load balancing on unrelated parallel machines and clustering problems, including constant-factor approximation algorithms when $f$ belongs with a certain rich family of norms, and $O(\log n)$-approximations when $f$ is general and satisfies some mild assumptions. We also consider the aforementioned problems in a generalized fairness setting. As a concrete example, the insight is to prevent a scheduling algorithm from assigning too many jobs consistently on any machine in a job-recurring scenario, and causing the machine's controller to fail. Our algorithm needs to stochastically output a feasible solution minimizing the objective function, and satisfy the given marginal fairness constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源