论文标题
在弯曲的空间中完全互补关系
Complete complementarity relations in curved spacetimes
论文作者
论文摘要
我们通过考虑一系列无限的局部洛伦兹转变,将完全的互补关系扩展到弯曲的空间,这意味着随着量子通过其世界线的传播,互补性仍然有效。该结果允许研究量子系统的这些不同的互补方面,因为它可以通过时空。特别是,我们研究了Schwarzschild时空中大量自旋的这些不同互补特性的行为。对于大地圆形轨道,我们发现一个粒子的自旋状态在可分离状态和纠缠状态之间振荡。对于非地理圆形轨道,我们注意到这些振荡的频率随着轨道靠近Schwarzschild Radius $ r_s $而变得更大。
We extend complete complementarity relations to curved spacetimes by considering a succession of infinitesimal local Lorentz transformations, which implies that complementarity remains valid as the quanton travels through its world line and the complementarity aspects in different points of spacetime are connected. This result allows the study of these different complementary aspects of a quantum system as it travels through spacetime. In particular, we study the behavior of these different complementary properties of massive spin-$1/2$ particles in the Schwarzschild spacetime. For geodetic circular orbits, we find that the spin state of one particle oscillates between a separable and an entangled state. For non-geodetic circular orbits, we notice that the frequency of these oscillations gets bigger as the orbit gets nearer to the Schwarzschild radius $r_s$.