论文标题

对三角形的抗fiferromagnet tmmggao4中提议的kosterlitz的中子散射研究

Neutron scattering investigation of proposed Kosterlitz-Thouless transitions in the triangular-lattice Ising antiferromagnet TmMgGaO4

论文作者

Dun, Zhiling, Daum, Marcus, Baral, Raju, Fischer, Henry E., Cao, Huibo, Liu, Yaohua, Stone, Matthew B., Rodriguez-Rivera, Jose A., Choi, Eun Sang, Huang, Qing, Zhou, Haidong, Mourigal, Martin, Frandsen, Benjamin

论文摘要

三角形晶格上的横向场模型有望通过每个三角形单元上的旋转对复杂订单参数的映射进行中间有限的kosterlitz-thouless(KT)相。 TMMGGAO $ _4 $是一种候选材料,可以实现此类物理学,因为TM $^{3+} $ ion的非kramers性质和由此产生的两平均单位单动基态。使用非弹性中子散射,我们通过确定TMMGGAO $ _4 $的低能有效哈密顿量的领先参数来确认这张图片。随后,我们通过检查AC敏感性的场和温度依赖性来跟踪预测的KT相和相关的过渡。我们分别通过单晶中子衍射和磁性总散射技术进一步探测了相互空间和真实空间中的自旋相关性。磁对分布函数分析提供了形成涡流 - 抗反应对的证据,该对表征了5〜K左右所提出的KT相。尽管结构障碍会影响tmmggao $ _4 $的野外诱导行为,但零场中的磁性似乎与这些效果相对不含。这些结果位置tmmggao $ _4 $是在致密旋转系统中实现KT物理的强大候选者。

The transverse-field Ising model on the triangular lattice is expected to host an intermediate finite-temperature Kosterlitz-Thouless (KT) phase through a mapping of the spins on each triangular unit to a complex order parameter. TmMgGaO$_4$ is a candidate material to realize such physics due to the non-Kramers nature of Tm$^{3+}$ ion and the resulting two-singlet single-ion ground state. Using inelastic neutron scattering, we confirm this picture by determining the leading parameters of the low-energy effective Hamiltonian of TmMgGaO$_4$. Subsequently, we track the predicted KT phase and related transitions by inspecting the field and temperature dependence of the ac susceptibility. We further probe the spin correlations in both reciprocal space and real space via single crystal neutron diffraction and magnetic total scattering techniques, respectively. Magnetic pair distribution function analysis provides evidence for the formation of vortex-antivortex pairs that characterize the proposed KT phase around 5~K. Although structural disorder influences the field-induced behavior of TmMgGaO$_4$, the magnetism in zero field appears relatively free from these effects. These results position TmMgGaO$_4$ as a strong candidate for a solid-state realization of KT physics in a dense spin system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源