论文标题

在非切块的情况下,布鲁哈特山塔建筑的精美压实

Wonderful compactifications of Bruhat-Tits buildings in the non-split case

论文作者

Chanfi, Dorian

论文摘要

如果可以通过将建筑物将建筑物嵌入到Berkovich的出色分析中,可以识别出一个本地字段$ k $上的伴随半imple $ g $ $ g $,我们证明,可以确定$ g $的Bruhat-tits建筑物的最大压实。在此过程中,我们使用Brion给出的希尔伯特方案的奇妙紧凑型表征将奇妙的紧凑型的定义扩展到一个不必要的不​​必要的半伴随半imimple群体上的情况,并研究了其与边界上理性点有关的某些属性。 最后,考虑到有限的galois延长$ k'/k $,我们看一下Galois集团对$ k'$ $ k'$的建筑物建筑物的最大紧凑型的行为,并检查Galois固定点是否确切地是$ k'$的固定点序列的限制,尽管他们可能不在$ k'$ k $ k的$ k $ k $ kne $ kne $ k in satake-kov in satake-kiv in satake-kiv in satake-kiv in satake-kiv in satake-kiv in satake-kick in satake-bykov。

Given an adjoint semisimple group $G$ over a local field $k$, we prove that the maximal Satake-Berkovich compactification of the Bruhat-Tits building of $G$ can be identified with the one obtained by embedding the building into the Berkovich analytification of the wonderful compactification of $G$, extending previous results of Rémy, Thuillier and Werner. In the process, we use the characterisation of the wonderful compactification in terms of Hilbert schemes given by Brion to extend the definition of the wonderful compactification to the case of a non-necessarily split adjoint semisimple group over an arbitrary field and investigate some of its properties pertaining to rational points on the boundary. Lastly, given a finite possibly ramified Galois extension $k'/k$, we take a look at the action of the Galois group on the maximal compactification of the building of $G$ over $k'$ and check that the Galois-fixed points are precisely the limits of sequences of fixed points in the building over $k'$, though they may not lie in the Satake-Berkovich compactification of $G$ over $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源