论文标题
单层半导体中激素复合物的异常鲜明变化
Anomalous Stark Shift of Excitonic Complexes in Monolayer Semiconductor
论文作者
论文摘要
单层过渡金属二进制元素半导体具有强烈结合的二维激体复合物,并形成了通过操纵库仑相互作用来探测多体物理的绝佳平台。量子限制的Stark效应是动态调整这些激子复合物的发射线的途径之一。在这项工作中,使用高品质的石墨烯/HBN/WS $ _2 $/HBN/AU垂直异质结,我们首次演示,这是一个非平面型电场驱动的变化,这是从蓝色转变为从蓝色转变为红色转向红色转向的四种不同激动人物的迹象激子。这种通用的非单调的抗电场转移是由传统的量子限制恒定效应驱动的红移与抑制结合能量驱动的发射线异常蓝移之间的竞争,后者在低场状态中占主导地位。我们还发现,单层TMDC的封装环境在波函数扩散中起着重要作用,因此在确定蓝色Stark Shift的大小方面起着重要作用。中性和带电的激子物种的结果与伯特 - 盐钙甲方程的计算非常吻合,该方程使用每旋转紧密结合的哈密顿量使用七个波段。这些发现在探测两个维度的多体相互作用以及开发基于分层半导体的可调光电设备方面具有重要意义。
Monolayer transition metal dichalcogenide semiconductors host strongly bound two-dimensional excitonic complexes, and form an excellent platform for probing many-body physics through manipulation of Coulomb interaction. Quantum confined Stark effect is one of the routes to dynamically tune the emission line of these excitonic complexes. In this work, using a high quality graphene/hBN/WS$_2$/hBN/Au vertical heterojunction, we demonstrate for the first time, an out-of-plane electric field driven change in the sign of the Stark shift from blue to red for four different excitonic species, namely, the neutral exciton, the charged exciton (trion), the charged biexciton, and the defect-bound exciton. Such universal non-monotonic Stark shift with electric field arises from a competition between the conventional quantum confined Stark effect driven red shift and a suppressed binding energy driven anomalous blue shift of the emission lines, with the latter dominating in the low field regime. We also find that the encapsulating environment of the monolayer TMDC plays an important role in wave function spreading, and hence in determining the magnitude of the blue Stark shift. The results for neutral and charged excitonic species are in excellent agreement with calculations from Bethe-Salpeter Equation that uses seven-band per spin tight binding Hamiltonian. The findings have important implications in probing many-body interaction in the two dimension as well as in developing layered semiconductor based tunable optoelectronic devices.