论文标题
时间延迟非线性反馈振荡器的参数激发和HOPF分叉分析
Parametric excitation and Hopf bifurcation analysis of a time delayed nonlinear feedback oscillator
论文作者
论文摘要
在本文中,已经尝试了解非线性振荡器的周期性轨道的参数激发,这可能是极限周期,中心或缓慢衰减的中心型振荡。为此,使用Liénard振荡器描述定义的非线性反馈振荡器考虑了延迟模型,这可以引起上述任何周期轨道。我们已经从其稳定性和分叉分析中,参考了标准延迟范德尔系统的稳定性和分叉分析来表征任意非线性系统的共振和抗抗异位行为。使用Krylov--Bogoliubov(K-B)平均方法的近似分析解决方案可用于识别亚谐波的共振和抗抗谐振和每个周期的平均能量消耗。使用正常形式和中心歧管理论实现了从微不足道固定点分叉的周期溶液分叉的方向。还通过分叉分析对参数激发进行了彻底研究,以找到控制参数(如时间延迟,阻尼和非线性项)的作用。
In this paper, an attempt has been made to understand the parametric excitation of a periodic orbit of nonlinear oscillator which can be a limit cycle, center or a slowly decaying center-type oscillation. For this a delay model is considered with nonlinear feedback oscillator defined in terms of Liénard oscillator description which can give rise to any one of the periodic orbits stated above. We have characterized the resonance and antiresonance behaviour for arbitrary nonlinear system from their stability and bifurcation analyses in reference to the standard delayed van der Pol system. An approximate analytical solution using Krylov--Bogoliubov (K-B) averaging method is utilised to recognize the sub-harmonic resonance and antiresonance, and average energy consumption per cycle. Direction of Hopf bifurcation and stability of the periodic solution bifurcating from the trivial fixed point are carried out using normal form and center manifold theory. The parametric excitation is also thoroughly investigated via bifurcation analysis to find the role of the control parameters like time delay, damping and nonlinear terms.