论文标题
浅角色和超质表示
Shallow Characters and Supercuspidal Representations
论文作者
论文摘要
2014年,里德(Reeder)和尤(Yu)从浅层Moy-Prasad商的稳定功能中构建了还原$ p $ adic $ g $的表皮表示。在本文中,我们将这些方法扩展到$ G $时。特别是,我们将所有复杂值的字符分类在更深层次的Moy-Prasad子组上,并表明,尽管足够,但对于构建超级斜线表示,Reeder-yu的稳定性条件并不是必需的。
In 2014, Reeder and Yu constructed epipelagic representations of a reductive $p$-adic group $G$ from stable functions on shallowest Moy-Prasad quotients. In this paper, we extend these methods when $G$ is split. In particular, we classify all complex-valued characters vanshing on a slightly deeper Moy-Prasad subgroup and show that, while sufficient, a naive extension of Reeder-Yu's stability condition is not necessary for constructing supercuspidal representations.