论文标题

$ u(1)^3 $模型的渐近边界条件

Asymptotically flat boundary conditions for the $U(1)^3$ model for Euclidean Quantum Gravity

论文作者

Bakhoda, Sepideh, Shojaie, Hossein, Thiemann, Thomas

论文摘要

描述$ g_n \至0 $欧几里得一般相对性限制的一般协变量$ u(1)^3 $仪表理论是一个有趣的测试实验室,尤其是因为汉密尔顿的代数和此限制的限制的代数对相对限制的差异是同构的。在目前的工作中,我们研究了$ u(1)^3 $模型的边界条件和渐近对称性,并表明虽然渐近时空翻译允许定义明确的发电机,但增强和旋转却没有。与欧几里得的一般相对论相比,人们发现$ su(2)$ gauss约束的非亚洲部分恰好是$ u(1)^3 $模型在获得增压和旋转发生器中起着至关重要的作用。

A generally covariant $U(1)^3$ gauge theory describing the $G_N \to 0$ limit of Euclidean general relativity is an interesting test laboratory for general relativity, specially because the algebra of the Hamiltonian and diffeomorphism constraints of this limit is isomorphic to the algebra of the corresponding constraints in general relativity. In the present work, we study boundary conditions and asymptotic symmetries of the $U(1)^3$ model and show that while asymptotic spacetime translations admit well-defined generators, boosts and rotations do not. Comparing with Euclidean general relativity, one finds that exactly the non-Abelian part of the $SU(2)$ Gauss constraint which is absent in the $U(1)^3$ model plays a crucial role in obtaining boost and rotation generators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源