论文标题

具有详细余额的反应扩散方程的结构性,操作员分裂方案

A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance

论文作者

Liu, Chun, Wang, Cheng, Wang, Yiwei

论文摘要

在本文中,我们建议和分析涉及质量行动定律具有详细平衡条件的某些类型的反应扩散系统的阳性,能量稳定的数值方案。数值方案是基于最近开发的能量变异公式构建的,其中反应部分根据反应轨迹重新制定。反应和扩散零件都消散相同的自由能的事实为这些系统打开了能量稳定的算子分裂方案的路径。在反应阶段,我们通过将其凸的性质隐含地处理中的所有对数项来求解反应轨迹的方程。基于对数函数围绕限制值的奇异行为,可以在理论上证明具有积极性的属性和独特的溶解性。此外,可以通过仔细的凸度分析来证明该方案在反应阶段的能量稳定性。类似的技术用于在扩散阶段为标准半图像求解者建立阳性性能和能量稳定性。结果,这两个阶段的结合导致了原始反应扩散系统的阳性和能量稳定的数值方案。据我们所知,这是第一次向具有变异结构的非线性PDE报告基于能量释放的运算符分裂方案。提出了几个数值示例,以证明所提出的操作员分裂方案的鲁棒性。

In this paper, we propose and analyze a positivity-preserving, energy stable numerical scheme for certain type reaction-diffusion systems involving the Law of Mass Action with the detailed balance condition. The numerical scheme is constructed based on a recently developed energetic variational formulation, in which the reaction part is reformulated in terms of reaction trajectories. The fact that both the reaction and the diffusion parts dissipate the same free energy opens a path of an energy stable, operator splitting scheme for these systems. At the reaction stage, we solve equations of reaction trajectories by treating all the logarithmic terms in the reformulated form implicitly due to their convex nature. The positivity-preserving property and unique solvability can be theoretically proved, based on the singular behavior of the logarithmic function around the limiting value. Moreover, the energy stability of this scheme at the reaction stage can be proved by a careful convexity analysis. Similar techniques are used to establish the positivity-preserving property and energy stability for the standard semi-implicit solver at the diffusion stage. As a result, a combination of these two stages leads to a positivity-preserving and energy-stable numerical scheme for the original reaction-diffusion system. To our best knowledge, it is the first time to report an energy-dissipation-law-based operator splitting scheme to a nonlinear PDE with variational structures. Several numerical examples are presented to demonstrate the robustness of the proposed operator splitting scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源