论文标题

展拓扑半学MO5SI3中掺杂诱导的超导性

Doping-induced superconductivity in the topological semimetal Mo5Si3

论文作者

Wu, Jifeng, Hua, Chenqiang, Liu, Bin, Cui, Yanwei, Zhu, Qinqing, Xiao, Guorui, Wu, Siqi, Cao, Guanghan, Lu, Yunhao, Ren, Zhi

论文摘要

拓扑材料的化学掺杂可能为实现拓扑超导性提供了可能的途径。但是,到目前为止已知的所有此类病例均基于葡萄干剂。在这里,我们报告了通过在具有四方结构的拓扑半学Mo $ _ {5} $ si $ _ {3} $中掺杂的超导性的发现。部分替换为mo $ $ _ {5-x} $ re $ _ {x} $ si $ _ {3} $导致单位单元的各向异性收缩,可溶解度限制至约$ x $ = 2。具有完全各向同性间隙的超导体。 $ t _ {\ rm c} $用$ x $从1.67 K增加到单调增加到5.78 K,后者是同一结构类型的超导体中最高的。 $ t _ {\ rm c} $的这种趋势与价电子数量的变化很好,并且主要归因于增强电子 - phonon耦合的能力。此外,频带结构计算表明,超导体$ $ _ {5-x} $ re $ _ {x} $ si $ _ {3} $展示的非平凡频段拓扑是在$ z_ {2} $ invariants(1; 000)或(1; 000)或(1; 111)(根据re repoping级别)进行的。我们的结果表明,过渡金属硅胶是探索候选拓扑超导体的肥沃基础。

Chemical doping of topological materials may provide a possible route for realizing topological superconductivity. However, all such cases known so far are based on chalcogenides. Here we report the discovery of superconductivity induced by Re doping in the topological semimetal Mo$_{5}$Si$_{3}$ with a tetragonal structure. Partial substitution of Re for Mo in Mo$_{5-x}$Re$_{x}$Si$_{3}$ results in an anisotropic shrinkage of the unit cell up to the solubility limit of approximately $x$ = 2. Over a wide doping range (0.5 $\leq$ $x$ $\leq$ 2), these silicides are found to be weakly coupled superconductors with a fully isotropic gap. $T_{\rm c}$ increases monotonically with $x$ from 1.67 K to 5.78 K, the latter of which is the highest among superconductors of the same structural type. This trend in $T_{\rm c}$ correlates well with the variation of the number of valence electrons, and is mainly ascribed to the enhancement of electron-phonon coupling. In addition, band structure calculations reveal that superconducting Mo$_{5-x}$Re$_{x}$Si$_{3}$ exhibits nontrivial band topology characterized by $Z_{2}$ invariants (1;000) or (1;111) depending on the Re doping level. Our results suggest that transition metal silicides are a fertile ground for the exploration of candidate topological superconductors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源