论文标题

在十亿核心近似计算机上迈向晶格QCD

Toward Lattice QCD On Billion Core Approximate Computers

论文作者

Bates, Alexandra, Bates, Joseph

论文摘要

我们提供了使用数十亿个核心近似计算机运行简单u(1)Sigma模型的可行性的证据,并讨论了如何将方法扩展到晶格量子染色体动力学(LQCD)模型。这项工作是由在当前计算硬件上运行LQCD所需的极端时间,功率和成本的动机。我们表明,使用大量平行的近似硬件,至少某些型号可以以极高的速度和功率效率运行而不会牺牲准确性。作为精度测试,使用浮点和旋转的近似表示,32 x 32 x 32 U(1)Sigma模型产生了相似的结果。在34,000核单板原型近似计算机上运行的2000万个点3D模型,与传统的CPU相比,速度提高了约750倍,速度/瓦的速度提高了约750倍,具有令人鼓舞的精度。这些结果表明,未来的研究具有价值,可以确定在紧凑型十亿核近似计算系统上是否可以完全运行类似的加速和准确性,这些计算系统现在是实用的。

We present evidence of the feasibility of using billion core approximate computers to run simple U(1) sigma models, and discuss how the approach might be extended to Lattice Quantum Chromodynamics (LQCD) models. This work is motivated by the extreme time, power, and cost needed to run LQCD on current computing hardware. We show that, using massively parallel approximate hardware, at least some models can run with great speed and power efficiency without sacrificing accuracy. As a test of accuracy, a 32 x 32 x 32 U(1) sigma model yielded similar results using floating point and approximate representations for the spins. A 20 million point 3D model, run on a 34,000-core single-board prototype approximate computer, showed encouraging accuracy with a ~750 times improvement in speed and ~2500 times improvement in speed/watt compared to a traditional CPU. These results suggest there is value in future research to determine whether similar speed-ups and accuracies are possible running full LQCD on the compact billion-core approximate computing systems that are now practical.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源