论文标题
散射幅度和Navier-Stokes方程
Scattering Amplitudes and the Navier-Stokes Equation
论文作者
论文摘要
我们探索了由Navier-Stokes方程及其非亚洲概括所描述的流体量子的散射幅度。这些振幅表现出类似于温伯格软定理和零零的通用红外结构。此外,它们满足了壳递归关系,该关系与三点散射振幅一起提供了不可压缩的流体力学的纯S-Matrix公式。值得注意的是,非亚洲纳维尔 - 螺旋式方程的幅度也表现出色系对偶性作为脱壳对称性,对此,相关的运动代数实际上是空间差异的代数。应用双副本处方,然后我们得出了张量双流体的新理论。最后,我们介绍了非亚洲和张量的Navier-Stokes方程的单极溶液,并观察了经典的双复制结构。
We explore the scattering amplitudes of fluid quanta described by the Navier-Stokes equation and its non-Abelian generalization. These amplitudes exhibit universal infrared structures analogous to the Weinberg soft theorem and the Adler zero. Furthermore, they satisfy on-shell recursion relations which together with the three-point scattering amplitude furnish a pure S-matrix formulation of incompressible fluid mechanics. Remarkably, the amplitudes of the non-Abelian Navier-Stokes equation also exhibit color-kinematics duality as an off-shell symmetry, for which the associated kinematic algebra is literally the algebra of spatial diffeomorphisms. Applying the double copy prescription, we then arrive at a new theory of a tensor bi-fluid. Finally, we present monopole solutions of the non-Abelian and tensor Navier-Stokes equations and observe a classical double copy structure.