论文标题
He I D3的线形成,他在一个小规模的重新连接活动中I10830Å
Line formation of He I D3 and He I 10830 Å in a small-scale reconnection event
论文作者
论文摘要
目标。我们旨在解释He I D3的线形成,并在小型重新连接事件中进行10830Å。方法。我们使用模拟的Ellerman炸弹(EB),该炸弹存在于三叶果发生成的辐射磁流失动力学(RMHD)快照中。最终的I D3和He I10830Å线强度使用非LTE Multi3D代码合成3D。我们将合成的氦光谱与观察到的SST/Trippel栅格扫描在He I10830Å中进行比较。结果。在He I D3中的排放,He I10830Å以EB周围的薄外壳形成,高度为$ \ sim 0.8 $毫米,而He I D3吸收在EB上方以$ \ sim 4 $ mm形成。排放形成的高度对应于EB的下边界,在该高度上,温度从$ 6 \ cdot 10^3 $ k升至$ 10^6 $ k。他的不透明度和He I10830Å通过光电离子成分产生的EV驱动的EB驱动的eB驱动的eb cdot cdot cdot cdot cdot cdot cdot cdot cdot cdot cdot cdot fest the cd cdot中的温度很高。 $ 10^{11} $和$ 10^{13} $ cm $^{ - 3} $之间的电子密度。合成发射信号是EB周围稀薄外壳中与当地条件耦合的结果,温度在$ 7 \ cdot 10^3 $和$ 10^4 $ K和电子密度范围从$ \ sim 10^{12} $到$ 10^{13} $ 10^{13} $ CM $ CM $^{ - 3} $不等。因此,强的非LTE和热过程都在我们研究的合成EB/UV爆发中发挥了作用,而他I D3和I10830Å。结论。总之,合成的He I D3和He I10830Å排放签名是温度至少至少$ 2 \ cdot 10^4 $ K的指标,在这种情况下,高达$ \ sim 10^6 $ k。
Aims. We aim to explain line formation of He I D3 and He I 10830 Å in small-scale reconnection events. Methods. We make use of a simulated Ellerman bomb (EB), present in a Bifrost-generated radiative Magnetohydrodynamics (rMHD) snapshot. The resulting He I D3 and He I 10830 Å line intensities are synthesized in 3D using the non-LTE Multi3D code. We compare the synthetic helium spectra with observed SST/TRIPPEL raster scans of EBs in He I 10830 Å and He I D3. Results. Emission in He I D3 and He I 10830 Å is formed in a thin shell around the EB at a height of $\sim 0.8$ Mm while the He I D3 absorption is formed above the EB at $\sim 4$ Mm. The height at which the emission is formed corresponds to the lower boundary of the EB, where the temperature increases rapidly from $6\cdot 10^3$ K to $10^6$ K. The opacity in He I D3 and He I 10830 Å is generated via photoionization-recombination driven by EUV radiation that is locally generated in the EB at temperatures in the range of $2\cdot 10^4 - 2\cdot 10^6$ K and electron densities between $10^{11}$ and $10^{13}$ cm$^{-3}$. The synthetic emission signals are a result of coupling to local conditions in a thin shell around the EB, with temperatures between $7\cdot 10^3$ and $10^4$ K and electron densities ranging from $\sim 10^{12}$ to $10^{13}$ cm$^{-3}$. Hence, both strong non-LTE as well as thermal processes play a role in the formation of He I D3 and He I 10830 Å in the synthetic EB/UV burst that we studied. Conclusions. In conclusion, the synthetic He I D3 and He I 10830 Å emission signatures are an indicator of temperatures of at least $2\cdot 10^4$ K and in this case as high as $\sim 10^6$ K.