论文标题

关于某些纯度元环节20度20的投降问题

On the capitulation problem of some pure metacyclic fields of degree 20

论文作者

Elmouhib, Fouad, Talbi, Mohamed, Azizi, Abdelmalek

论文摘要

令$γ\,= \,\ Mathbb {q}(\ sqrt [5] {n})$是一个纯Quintic字段,其中$ n $是一个正整数$ 5^{th} $ power-power,$ k_0 \,$ k_0 \,= \,= \,\ mathbb {q} Q}(q} Q}(Q}(Q} ecclot cyclot cyclot cyclot cyclot, $ 5^{th} $ unity $ζ_5$的根和$ k \,= \,\ Mathbb {q}(\ sqrt [5] {n},ζ_5)$ $γ$的正常闭合。令$ k_5^{(1)} $为希尔伯特$ 5 $ - $ k $,$ c_ {k,5} $ $ 5 $ - 理想的$ k $的$ 5 $ - ideal类组,以及$ c_ {k,5}^{(σ)} $在$ gal(k/k_0)$ gal(k__0)$ gal(k__0)的歧义类中。当$ c_ {k,5} $是类型$(5,5)$和等级$ c_ {k,5}^{(σ)} \,= \,1 $时,我们研究了$ 5 $ -IDEAL类的投票问题$ C_ {k,5} $的$ 5 $ C_ {K,5} $,在$ k_5^^^^$ K_5^^{1)中。

Let $Γ\,=\, \mathbb{Q}(\sqrt[5]{n})$ be a pure quintic field, where $n$ is a positive integer $5^{th}$ power-free, $k_0\,=\,\mathbb{Q}(ζ_5)$ be the cyclotomic field containing a primitive $5^{th}$ root of unity $ζ_5$, and $k\,=\,\mathbb{Q}(\sqrt[5]{n},ζ_5)$ the normal closure of $Γ$. Let $k_5^{(1)}$ be the Hilbert $5$-class field of $k$, $C_{k,5}$ the $5$-ideal classes group of $k$, and $C_{k,5}^{(σ)}$ the group of ambiguous classes under the action of $Gal(k/k_0)$ = $\langleσ\rangle$. When $C_{k,5}$ is of type $(5,5)$ and rank $C_{k,5}^{(σ)}\,=\,1$, we study the capitulation problem of the $5$-ideal classes of $C_{k,5}$ in the six intermediate extensions of $k_5^{(1)}/k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源