论文标题
划分光谱三元组的真正部分
Real Part of Twisted-by-Grading Spectral Triples
论文作者
论文摘要
经过对扭曲光谱三元对物理的应用的简短审查,我们适应了扭曲的情况,即光谱三重的真实部分的概念。特别是,当一个人通过评分来扭曲通常的光谱三倍时,我们表明 - 取决于$ ko $ dimension-实际部分也扭曲了,或者是初始代数与其相反的相交。我们用标准模型的光谱三重来说明了这一结果。
After a brief review on the applications of twisted spectral triples to physics, we adapt to the twisted case the notion of real part of a spectral triple. In particular, when one twists a usual spectral triple by its grading, we show that - depending on the $KO$ dimension - the real part is either twisted as well, or is the intersection of the initial algebra with its opposite. We illustrate this result with the spectral triple of the standard model.