论文标题
Szilard发动机作为量子热力学系统
Szilard Engines as Quantum Thermodynamical Systems
论文作者
论文摘要
我们分析了一个发动机,其工作流体由单个量子粒子组成,与Szilard平行的经典单粒子发动机的结构并行。在他使用后者解决了麦克斯韦的第二定律悖论之后,后者从物理实例化了恶魔(控制子系统)后,量子发动机的设计反映了经典的szilard地图,该地图运行了测量的热力学周期,热能提取,内存和内存重新安装。为了关注热力学成本,以观察和控制粒子并在量子和经典限制中进行比较,我们详细介绍了Landauer原理背后的热力学折衷,以在量子和经典方案中进行信息处理诱导的热力学耗散。特别是,正如经典发动机所发现的那样,我们表明了一个周期中热力学成本的总和遵守广义的陆路原理,完全平衡了从热浴中提取能量。因此,量子引擎遵守第二定律。但是,量子发动机通过实质上不同的机制进行操作:经典测量和擦除决定了热力学,而在量子实施中,分区插入的成本是关键。
We analyze an engine whose working fluid consists of a single quantum particle, paralleling Szilard's construction of a classical single-particle engine. Following his resolution of Maxwell's Second Law paradox using the latter, which turned on physically instantiating the demon (control subsystem), the quantum engine's design mirrors the classically-chaotic Szilard Map that operates a thermodynamic cycle of measurement, thermal-energy extraction, and memory reset. Focusing on the thermodynamic costs to observe and control the particle and comparing these in the quantum and classical limits, we detail the thermodynamic tradeoffs behind Landauer's Principle for information-processing-induced thermodynamic dissipation in the quantum and classical regimes. In particular, and as found with the classical engine, we show that the sum of the thermodynamic costs over a cycle obeys a generalized Landauer Principle, exactly balancing energy extraction from the heat bath. Thus, the quantum engine obeys the Second Law. However, the quantum engine does so via substantially different mechanisms: classically measurement and erasure determine the thermodynamics, while in the quantum implementation the cost of partition insertion is key.