论文标题

沿等源块的基质压缩

Matrix compression along isogenic blocks

论文作者

Belton, Alexander, Guillot, Dominique, Khare, Apoorva, Putinar, Mihai

论文摘要

基质压缩算法源自方形矩阵的新型等源性块分解。所得的压缩和通胀操作具有强大的功能和光谱 - 永久性能。 Hadamard入口函数演算保留的基因源性块的基本观察已经被证明对阈值大相关矩阵至关重要。所提出的复杂矩阵集的同源分层与同质代数歧管的舒伯特细胞分层具有相似性。简要提到了计算矩阵分析中当前研究的一系列潜在应用,触及了诸如对称统计模型,层次矩阵和由分区树诱导的相干矩阵组织等概念。

A matrix-compression algorithm is derived from a novel isogenic block decomposition for square matrices. The resulting compression and inflation operations possess strong functorial and spectral-permanence properties. The basic observation that Hadamard entrywise functional calculus preserves isogenic blocks has already proved to be of paramount importance for thresholding large correlation matrices. The proposed isogenic stratification of the set of complex matrices bears similarities to the Schubert cell stratification of a homogeneous algebraic manifold. An array of potential applications to current investigations in computational matrix analysis is briefly mentioned, touching concepts such as symmetric statistical models, hierarchical matrices and coherent matrix organization induced by partition trees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源