论文标题

在矩形$δ$ -semistandard tableaux上的促销和循环筛分

Promotion and Cyclic Sieving on Rectangular $δ$-Semistandard Tableaux

论文作者

Akhmejanov, Tair, Elek, Balázs

论文摘要

令$δ=(δ_1,\ ldots,δ_n)$为字母$ h $和$ v $。如果条目沿行和列弱增加,则我们将年轻的图表定义为$δ$ -Semistandard,如果$δ_i= h $,则条目$ i $形成水平条,如果$Δ_I= v $,则垂直条。我们通过修改后的Jeu-de-Taquin在此类tableaux上定义$δ$ - 促销。第一个主要结果是$δ$ - 促销在矩形$Δ$ -Semistard tableaux上具有$ n $,概括了Haiman和Rhoades的标准和Semistandard Tableaux的结果。第二个主要结果指出,固定$δ$的矩形$δ$ -semistandard tableaux和content $γ$与广义的kostka多项式表现出环状筛分现象。为此,我们遵循Fontaine-kamnitzer并为$(δ,γ)$ a $ sl_m $ $ -INVARIANT SPACE INV $(v_ {λ^1} \ otimes \ cdots \ cdots \ cdots \ otimes v_ {λ^n})$每个$ v_ {λ^i} $ s e替代或sym sym symernationdations。我们表明,相应不变空间的萨克斯基础由对应于$(δ,γ)$的tableaux组索引,并通过张量因子的旋转来定位。然后,我们使用融合产物将旋转动作对角线化。这种循环筛分概括了罗德斯和fontaine-kamnitzer的结果(在A型中),并且与Westbury的结果密切相关。

Let $δ=(δ_1,\ldots,δ_n)$ be a string of letters $h$ and $v$. We define a Young tableau to be $δ$-semistandard if the entries are weakly increasing along rows and columns, and the entries $i$ form a horizontal strip if $δ_i=h$ and a vertical strip if $δ_i=v$. We define $δ$-promotion on such tableaux via a modified jeu-de-taquin. The first main result is that $δ$-promotion has period $n$ on rectangular $δ$-semistandard tableaux, generalizing the results of Haiman and Rhoades for standard and semistandard tableaux. The second main result states that the set of rectangular $δ$-semistandard tableaux for fixed $δ$ and content $γ$ exhibits the cyclic sieving phenomenon with the generalized Kostka polynomial. To do so we follow Fontaine-Kamnitzer and associate to $(δ,γ)$ an $SL_m$-invariant space Inv$(V_{λ^1}\otimes\cdots\otimes V_{λ^n})$ where each $V_{λ^i}$ is an alternating or symmetric representation. We show that the Satake basis of the corresponding invariant space is indexed by the set of tableaux corresponding to $(δ,γ)$ and is permuted by rotation of tensor factors. We then diagonalize the rotation action using the fusion product. This cyclic sieving generalizes the result of Rhoades, and of Fontaine-Kamnitzer (in type A), and is closely related to that of Westbury.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源