论文标题
Alcubierre和Natário扭曲驱动器的曲率不变性
Curvature Invariants for the Alcubierre and Natário Warp Drives
论文作者
论文摘要
使用曲率不变性的过程来评估Alcubierre的指标,而Natario Warp驱动器以恒定的速度进行评估。核Varvature不变性与坐标底座无关,因此绘制这些不变性的不变性将不受坐标映射的静止。结果,它们为诸如经线驱动器之类的复杂空间提供了一种新颖的看法。经线驱动器是爱因斯坦田间方程式的理论解决方案,它允许更快的光线(FTL)旅行。尽管他们的数学已经建立了良好,但这种空间的可视化尚未探索。本文使用计算和绘制翘曲驱动曲率不变的方法来揭示这些空间。速度,皮肤深度和半径的经线驱动参数单独变化,然后绘制以查看每个参数对周围曲率的唯一效果。对于每个翘曲驱动器,本研究显示了一个安全港以及形状功能如何形成翘曲气泡。恒定速度Natario Warp驱动器的曲率图不包含唤醒或恒定曲率,这表明这些是加速Natario Warp驱动器的独特功能。
A process for using curvature invariants is applied to evaluate the metrics for the Alcubierre and the Natario warp drives at a constant velocity.Curvature invariants are independent of coordinate bases, so plotting these invariants will be free of coordinate mapping distortions. As a consequence, they provide a novel perspective into complex spacetimes such as warp drives. Warp drives are the theoretical solutions to Einstein's field equations that allow the possibility for faster-than-light (FTL) travel. While their mathematics is well established, the visualisation of such spacetimes is unexplored. This paper uses the methods of computing and plotting the warp drive curvature invariants to reveal these spacetimes. The warp drive parameters of velocity, skin depth and radius are varied individually and then plotted to see each parameter's unique effect on the surrounding curvature. For each warp drive, this research shows a safe harbor and how the shape function forms the warp bubble. The curvature plots for the constant velocity Natario warp drive do not contain a wake or a constant curvature indicating that these are unique features of the accelerating Natario warp drive.