论文标题
变化的物理常数和锂问题
Varying physical constants and the lithium problem
论文作者
论文摘要
我们已经使用了最近发表的各种物理常数(VPC)方法来解决原始锂丰度问题。 $ 7li $与氢$ 7li/h = 1.400(\ pm 0.023){\ times} 10^{ - 10} $的价值比使用标准lambda冷dark($λ$ CDM)宇宙模型($ pm pm pm pm pm pm pm pm pm pm pm pm pm pm pm y 1 1)低约四倍。 0.3){\ times} 10^{ - 10} $。在VPC方法中,Einstein方程进行了修改,包括使用Einstein-Hilbert Action使用Light $ C $,重力常数$ G $和宇宙常数$λ$的变化。这种方法在宇宙学上的应用自然会导致木板常数$ \ hbar $和玻尔兹曼常数$ k_b $的变化。他们以比例因子$ a \ ll 1 $:$ c = c_0/e $,$ g = g_0/e^3 $,$ \ hbar = \ hbar_0/e $和$ k_b = k_b = k_ {b0}/e^{5/4} $,其中$ e $是euler的号码(2.7183)。由于VPC宇宙学在很小的尺度因素下将与$λ$ CDM宇宙学相同的形式降低,因此我们可以使用上述更改来计算VPC宇宙学下的光元素丰度。除其他丰度外,我们还以巴属与光子比$η= 6.1 {\ times} 10^{ - 10} $是:$ 4He/h = 0.2478(\ pm 0.041)$,$ d/h = 2.453(\ pm 0.041)(\ pm 0.041){\ pm 0.041) 0.049){\ times} 10^{ - 5} $。
We have used the recently published varying physical constants (VPC) approach to resolve the primordial lithium abundance problem. The value of the ratio of $7Li$ to hydrogen $7Li/H=1.400(\pm 0.023){\times}10^{-10}$ we have calculated using this approach is about four times lower than that estimated using the standard lambda cold dark matter ($Λ$CDM) cosmological model, and is consistent with the most agreed observational value of $1.6(\pm 0.3){\times}10^{-10}$. In the VPC approach Einstein equations are modified to include the variation of the speed of light $c$, gravitational constant $G$ and cosmological constant $Λ$ using the Einstein-Hilbert action. Application of this approach to cosmology naturally leads to the variation of the Plank constant $\hbar$ and the Boltzmann constant $k_B$ as well. They approach fixed values at the scale factor $a\ll 1$: $c=c_0/e$, $G=G_0/e^3$, $\hbar=\hbar_0/e$ and $k_B=k_{B0}/e^{5/4}$, where $e$ is the Euler's number (=2.7183). Since the VPC cosmology reduces to the same form as the $Λ$CDM cosmology at very small scale factors, we could use an existing Big-Bang nucleosynthesis (BBN) code AlterBBN with the above changes to calculate the light element abundances under the VPC cosmology. Among other abundances we have calculated at baryon to photon ratio $η=6.1{\times}10^{-10}$ are: $4He/H =0.2478 (\pm 0.041)$, $D/H =2.453(\pm 0.041){\times}10^{-5}$ and $3 He/H=2.940(\pm 0.049){\times}10^{-5}$.