论文标题
均衡和渐近保存的IMEX-PEER方法
Well-Balanced and Asymptotic Preserving IMEX-Peer Methods
论文作者
论文摘要
同行方法是一种全面的时间集成商,在其系数矩阵中提供了许多自由度,可用于确保有利属性,例如A稳定性或超级融合。在本文中,我们表明,隐式解释(IMEX)同行方法是均衡的,并且通过构造可以保存均匀,而无需对系数的其他限制。例如,在求解平衡法的双曲线系统时,这些属性是相关的。数值示例确认了理论结果并说明了IMEX-PER方法的潜力。
Peer methods are a comprehensive class of time integrators offering numerous degrees of freedom in their coefficient matrices that can be used to ensure advantageous properties, e.g. A-stability or super-convergence. In this paper, we show that implicit-explicit (IMEX) Peer methods are well-balanced and asymptotic preserving by construction without additional constraints on the coefficients. These properties are relevant when solving (the space discretisation of) hyperbolic systems of balance laws, for example. Numerical examples confirm the theoretical results and illustrate the potential of IMEX-Peer methods.