论文标题

$ p $ - 可分别的hodge-newton过滤,内态结构分支很大

Hodge-Newton filtration for $p$-divisible groups with ramified endomorphism structure

论文作者

Marrama, Andrea

论文摘要

令$ \ mathcal {o} _k $为具有完美残留字段的混合特性$(0,p)$的完整离散评估环。我们证明了$ p $ - 数字的hodge-newton过滤的存在,$ \ mathcal {o} _k $,具有额外的内态结构,用于有限的,可能受到的$ \ m arterbb {q} _p $ $ \ mathbb {q} _p $的整数范围。该论点基于$ \ MATHCAL {O} _K $的有限平面组方案的较难纳拉西姆汉理论。特别是,我们描述了存在于$ \ mathcal {o} _K $上的$ p $可分别组过滤的足够条件,与较硬的narasimhan polygon的断裂点相关。

Let $\mathcal{O}_K$ be a complete discrete valuation ring of mixed characteristic $(0,p)$ with perfect residue field. We prove the existence of the Hodge-Newton filtration for $p$-divisible groups over $\mathcal{O}_K$ with additional endomorphism structure for the ring of integers of a finite, possibly ramified field extension of $\mathbb{Q}_p$. The argument is based on the Harder-Narasimhan theory for finite flat group schemes over $\mathcal{O}_K$. In particular, we describe a sufficient condition for the existence of a filtration of $p$-divisible groups over $\mathcal{O}_K$ associated to a break point of the Harder-Narasimhan polygon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源