论文标题
通过迭代Glasso和投影学习稀疏的图形laplacian用k特征向量
Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative GLASSO and Projection
论文作者
论文摘要
学习合适的图是许多图形信号处理(GSP)管道(例如图形光谱信号压缩和降解)的重要前体。以前的图形学习算法i)对连接性(例如图形稀疏性)做出一些假设,或者ii)进行简单的图形边缘假设,例如正面边缘。在本文中,鉴于从数据中计算出的经验协方差矩阵$ \ bar {c} $,我们考虑在图形laplacian矩阵$ l $的结构假设上:$ l $的第一个$ k $ eigenVectors of $ l $的第一个$ k $ eigenVectors treemitiria in Compitige efterige ectigriper,以及RENICTION,以及RENINGER,以及RENINGER,以及RENINGERIND,以及RENINGERIDENTERTINE,以及RESTAINS,并将其re nection ersimentions comptig exterions comptig exterions ersutions。一个示例用例是图像编码,其中第一个特征向量是预选为恒定的,无论可用的观察到的数据如何。我们首先证明,对称阳性半定位(PSD)矩阵$ H_ {u}^+$的子空间,第一个$ k $ eigenVectors是$ \ {u_k \} $,在定义的Hilbert Space中是convex锥。然后,我们构建一个运算符,以将给定的正定矩阵$ l $投影到$ h_ {u}^+$,灵感来自革兰氏schmidt过程。最后,我们设计了一种有效的混合图形套索/投影算法来计算H_ {u}^+$ in $ \ bar {c} $中最合适的图形laplacian矩阵$ l^* \。实验结果表明,鉴于先前的第一个$ k $ eigenVectors,我们的算法使用各种图形比较指标优于竞争图的学习方案。
Learning a suitable graph is an important precursor to many graph signal processing (GSP) pipelines, such as graph spectral signal compression and denoising. Previous graph learning algorithms either i) make some assumptions on connectivity (e.g., graph sparsity), or ii) make simple graph edge assumptions such as positive edges only. In this paper, given an empirical covariance matrix $\bar{C}$ computed from data as input, we consider a structural assumption on the graph Laplacian matrix $L$: the first $K$ eigenvectors of $L$ are pre-selected, e.g., based on domain-specific criteria, such as computation requirement, and the remaining eigenvectors are then learned from data. One example use case is image coding, where the first eigenvector is pre-chosen to be constant, regardless of available observed data. We first prove that the subspace of symmetric positive semi-definite (PSD) matrices $H_{u}^+$ with the first $K$ eigenvectors being $\{u_k\}$ in a defined Hilbert space is a convex cone. We then construct an operator to project a given positive definite (PD) matrix $L$ to $H_{u}^+$, inspired by the Gram-Schmidt procedure. Finally, we design an efficient hybrid graphical lasso/projection algorithm to compute the most suitable graph Laplacian matrix $L^* \in H_{u}^+$ given $\bar{C}$. Experimental results show that given the first $K$ eigenvectors as a prior, our algorithm outperforms competing graph learning schemes using a variety of graph comparison metrics.