论文标题
建筑控制的状态空间模型:您应该走多深?
State space models for building control: how deep should you go?
论文作者
论文摘要
建筑物中的功耗显示了线性模型无法捕获的非线性行为,而经常性的神经网络(RNN)可以。这种能力使RNNS成为建筑物模型预测性控制(MPC)的有吸引力的替代方案。但是,RNN模型缺乏数学规律性,这使其在优化问题中的使用挑战。因此,这项工作系统地研究了在MPC框架中是否使用RNN进行建筑物控制提供了净收益。它比较了两个架构的表示功率和控制性能:完全非线性的RNN架构和具有非线性回归器的线性状态空间模型。比较涵盖了在相同条件下两个月的模拟操作中每个体系结构的五个实例。 RNN模型的一个小时预测的误差比线性误差低69%。在控制方面,线性状态空间模型在目标函数上的表现优于10%,显示了平均温度违规的2.8倍,并且需要RNN模型所需的计算时间的三分之一。因此,这项工作表明,在当前形式中,RNN确实提高了准确性,但在大多数MPC的情况下,最好的具有非线性回归器的线性状态空间模型是最好的。
Power consumption in buildings show non-linear behaviors that linear models cannot capture whereas recurrent neural networks (RNNs) can. This ability makes RNNs attractive alternatives for the model-predictive control (MPC) of buildings. However RNN models lack mathematical regularity which makes their use challenging in optimization problems. This work therefore systematically investigates whether using RNNs for building control provides net gains in an MPC framework. It compares the representation power and control performance of two architectures: a fully non-linear RNN architecture and a linear state-space model with non-linear regressor. The comparison covers five instances of each architecture over two months of simulated operation in identical conditions. The error on the one-hour forecast of temperature is 69% lower with the RNN model than with the linear one. In control the linear state-space model outperforms by 10% on the objective function, shows 2.8 times higher average temperature violations, and needs a third of the computation time the RNN model requires. This work therefore demonstrates that in their current form RNNs do improve accuracy but on balance well-designed linear state-space models with non-linear regressors are best in most cases of MPC.