论文标题
SNSE $ _2 $和SNS $ _2 $在压力下
Electronic, vibrational, and electron-phonon coupling properties in SnSe$_2$ and SnS$_2$ under pressure
论文作者
论文摘要
在高压下导致周期性扭曲,超导性和拓扑非平凡的阶段,锡丝酯化物和锡硫化物类别在高压下经历了多种结构过渡,但是对于这些系统的结构转换,存在许多争议。我们在密度功能理论的框架内执行第一原理计算,并仔细比较我们的结果与SNSE $ _2 $的可用实验表明,高压结果之间明显的矛盾可以归因于实验条件的差异。我们进一步证明,在静水压力下,$ \ sqrt {3} \ times \ sqrt {3} \ times 1 $可以通过周期性的质量变形,可以在Sns $ _2 $中稳定在20 GPA以上,这是在SNSE $ _2 $的情况下发现的,以及该层面的构成效果,以及该构成效果的汇总效果,以及到期的构成效果。电子 - phonon耦合在动量波矢量$ \ mathbf {q} $ = $(1/3、1/3、0)$。此外,我们研究了非绝热校正对计算出的声子频率的贡献,并表明当考虑到这些效果时,改善了高能量$ a_ {1g} $ phonon模式的理论与实验之间的定量一致性。最后,我们研究了在非静态压力下在SNSE $ _2 $中观察到的超导状态的性质,并在类似的实验条件下预测了SNS $ _2 $的超导性的出现,在SNS $ _2 $中具有可比的临界温度。有趣的是,在周期性的晶格扭曲相中,由于费米表面的重组,发现临界温度通过数量级降低。
The tin-selenide and tin-sulfide classes of materials undergo multiple structural transitions under high pressure leading to periodic lattice distortions, superconductivity, and topologically non-trivial phases, yet a number of controversies exist regarding the structural transformations in these systems. We perform first-principles calculations within the framework of density functional theory and a careful comparison of our results with available experiments on SnSe$_2$ reveals that the apparent contradictions among high-pressure results can be attributed to differences in experimental conditions. We further demonstrate that under hydrostatic pressure a $\sqrt{3} \times \sqrt{3} \times 1$ superstructure can be stabilized above 20 GPa in SnS$_2$ via a periodic lattice distortion as found recently in the case of SnSe$_2$, and that this pressure-induced phase transition is due to the combined effect of Fermi surface nesting and electron-phonon coupling at a momentum wave vector $\mathbf{q}$ = $(1/3, 1/3, 0)$. In addition, we investigate the contribution of nonadiabatic corrections on the calculated phonon frequencies, and show that the quantitative agreement between theory and experiment for the high-energy $A_{1g}$ phonon mode is improved when these effects are taken into account. Finally, we examine the nature of the superconducting state recently observed in SnSe$_2$ under nonhydrostatic pressure and predict the emergence of superconductivity with a comparable critical temperature in SnS$_2$ under similar experimental conditions. Interestingly, in the periodic lattice distorted phases, the critical temperature is found to be reduced by an order of magnitude due to the restructuring of the Fermi surface.