论文标题
用于微波转换的地面脉冲型腔电孔
Ground-state Pulsed Cavity Electro-optics for Microwave-to-optical Conversion
论文作者
论文摘要
在量子微波到光学(MO)转换器的发展中,参数光驱动引起的过多噪声仍然是Milli-Kelvin温度下的主要挑战。在这里,我们研究了在强烈的脉冲光激发下,在其量子基态处添加到其量子基态的无关噪声。集成的电流传感器利用了氮化铝微孔的固有效应,将芯片粘合到超导谐振器上。我们在基本温度下施加峰值功率超过稀释冰箱的冷却功率的脉冲光驱动器,我们观察到有效的双向mo转换,并具有近地面状态微波热激发($ \ bar {n} _ \ m arterrm {e} = 0.09 = 0.09 \ pm0.06 $)。时间演化研究表明,残留的热激发是由散落在芯片纤维界面上的流浪光吸收的超导体吸收。我们的结果揭示了在激烈的光学驱动器下抑制腔电磁系统中的微波噪声,这是微波和光学频率之间量子状态转导的重要步骤。
In the development of quantum microwave-to-optical (MO) converters, excessive noise induced by the parametric optical drive remains a major challenge at milli-Kelvin temperatures. Here we study the extraneous noise added to an electro-optic transducer in its quantum ground state under an intense pulsed optical excitation. The integrated electro-optical transducer leverages the inherent Pockels effect of aluminum nitride microrings, flip-chip bonded to a superconducting resonator. Applying a pulsed optical drive with peak power exceeding the cooling power of the dilution refrigerator at its base temperature, we observe efficient bi-directional MO conversion, with near-ground state microwave thermal excitation ($\bar{n}_\mathrm{e}=0.09\pm0.06$). Time evolution study reveals that the residual thermal excitation is dominated by the superconductor absorption of stray light scattered off the chip-fiber interface. Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state transduction between microwave and optical frequencies.