论文标题
软物质晶体和准晶体中的密度分布
Density Distribution in Soft Matter Crystals and Quasicrystals
论文作者
论文摘要
固体中的密度分布通常表示为以晶格位点或通过傅立叶总和为中心的高斯峰(或类似功能)的总和。在这里,我们认为,通过傅立叶总和代表密度分布的$ \ mathit {对数} $更好。我们表明,仅几个术语才能在软物质晶体上截断这样的表示形式。对于准晶体,此总和并不能如此容易截断,尽管如此,以这种方式代表密度曲线仍然很有用,使我们能够使用精确的非局部密度功能理论来计算三维准晶形成系统的相图。
The density distribution in solids is often represented as a sum of Gaussian peaks (or similar functions) centred on lattice sites or via a Fourier sum. Here, we argue that representing instead the $\mathit{logarithm}$ of the density distribution via a Fourier sum is better. We show that truncating such a representation after only a few terms can be highly accurate for soft matter crystals. For quasicrystals, this sum does not truncate so easily, nonetheless, representing the density profile in this way is still of great use, enabling us to calculate the phase diagram for a 3-dimensional quasicrystal forming system using an accurate non-local density functional theory.