论文标题
卷积LSTM用于多图像到单输出医学预测
Convolutional-LSTM for Multi-Image to Single Output Medical Prediction
论文作者
论文摘要
医疗头部CT-SCAN成像已成功地与用于头部疾病和病变的医学诊断的深度学习相结合[1]。该任务的最先进的分类模型和算法通常基于3D卷积层,用于监督学习设置的体积数据(1个输入量,每位患者1个预测)或2D卷积层在监督的设置中(1个输入图像,每个图像1个预测)。然而,发展中国家的一个非常普遍的情况是要使图像中格式转换的多个原因损失(例如.dicom to jpg),在这种情况下,医生分析了图像的收集,然后对患者发出单个诊断,然后对患者进行单一的诊断(可能是一个可能的情况,可以使用它的模型,而是一个可能的模型),没有一个模型,没有一个ART的模型,而Art to Art It the Art contress则是一个ART的模型(1个图像,1个诊断)设置中的问题,因为单个患者的图像的不同角度或位置可能不含疾病或病变。在这项研究中,我们通过将2D卷积[2]模型与序列模型相结合,仅在模型处理给定患者\(i \)的所有图像之后就产生预测的序列模型来提出解决方案,从而产生了所有图像,从而创建了对单诊断的多图像,对单诊断\(y^i = f(x_1,x_1,x_2,x_2,x__,x _,n)\(n heys n n here)。实验结果表明,有可能获得模拟人类医生诊断过程的单一诊断模型的多图像:评估患者图像的收集,然后在记忆中使用重要信息来决定患者的单个诊断。
Medical head CT-scan imaging has been successfully combined with deep learning for medical diagnostics of head diseases and lesions[1]. State of the art classification models and algorithms for this task usually are based on 3d convolution layers for volumetric data on a supervised learning setting (1 input volume, 1 prediction per patient) or 2d convolution layers in a supervised setting (1 input image, 1 prediction per image). However a very common scenario in developing countries is to have the volume metadata lost due multiple reasons for example formatting conversion in images (for example .dicom to jpg), in this scenario the doctor analyses the collection of images and then emits a single diagnostic for the patient (with possibly an unfixed and variable number of images per patient) , this prevents it from being possible to use state of the art 3d models, but also is not possible to convert it to a supervised problem in a (1 image,1 diagnostic) setting because different angles or positions of the images for a single patient may not contain the disease or lesion. In this study we propose a solution for this scenario by combining 2d convolutional[2] models with sequence models which generate a prediction only after all images have been processed by the model for a given patient \(i\), this creates a multi-image to single-diagnostic setting \(y^i=f(x_1,x_2,..,x_n)\) where \(n\) may be different between patients. The experimental results demonstrate that it is possible to get a multi-image to single diagnostic model which mimics human doctor diagnostic process: evaluate the collection of patient images and then use important information in memory to decide a single diagnostic for the patient.