论文标题

通过原子较薄的钴矿石中的呼吸晶格实现的强铁磁剂

Strong Ferromagnetism Achieved via Breathing Lattices in Atomically Thin Cobaltites

论文作者

Li, Sisi, Zhang, Qinghua, Lin, Shan, Sang, Xiahan, Need, Ryan F., Roldan, Manuel A., Cui, Wenjun, Hu, Zhiyi, Jin, Qiao, Chen, Shuang, Zhao, Jiali, Wang, Jia-Ou, Wang, Jiesu, He, Meng, Ge, Chen, Wang, Can, Lu, Hui-Bin, Wu, Zhenping, Guo, Haizhong, Tong, Xin, Zhu, Tao, Kirby, Brian, Gu, Lin, Jin, Kui-juan, Guo, Er-Jia

论文摘要

高维量子材料保持强烈的铁磁向下至单层厚度是高度想要的,这是对旋转的应用。尽管氧化物材料是下一代旋转的重要候选者,但当将厚度缩放到纳米仪表方案时,铁磁性会严重衰减,从而导致设备性能恶化。在这里,我们报告了一种在绝缘lacoo3(LCO)层中维持强力铁磁层的方法,从而降低到单个单位细胞的厚度。我们发现,LCO的磁性和电子状态与相邻“呼吸晶格” SRCUO2(SCO)的结构参数密切相关。随着SCO的维度降低,晶格常数沿着生长方向延伸了10%以上,导致COO6八面体的显着失真,并促进了更高的自旋状态和远程旋转顺序。对于原子较薄的LCO层,我们观察到令人惊讶的磁矩(0.5 Ub/co)和Curie温度(75 K),其值比以前报道的任何单氧化物氧化物大。我们的结果表明,通过利用原子异质界面工程,限制驱动的结构转换以及强相关材料中的自旋晶格来创建超薄的铁磁氧化物的策略。

Low-dimensional quantum materials that remain strongly ferromagnetic down to mono layer thickness are highly desired for spintronic applications. Although oxide materials are important candidates for next generation of spintronic, ferromagnetism decays severely when the thickness is scaled to the nano meter regime, leading to deterioration of device performance. Here we report a methodology for maintaining strong ferromagnetism in insulating LaCoO3 (LCO) layers down to the thickness of a single unit cell. We find that the magnetic and electronic states of LCO are linked intimately to the structural parameters of adjacent "breathing lattice" SrCuO2 (SCO). As the dimensionality of SCO is reduced, the lattice constant elongates over 10% along the growth direction, leading to a significant distortion of the CoO6 octahedra, and promoting a higher spin state and long-range spin ordering. For atomically thin LCO layers, we observe surprisingly large magnetic moment (0.5 uB/Co) and Curie temperature (75 K), values larger than previously reported for any mono layer oxide. Our results demonstrate a strategy for creating ultra thin ferromagnetic oxides by exploiting atomic hetero interface engineering,confinement-driven structural transformation, and spin-lattice entanglement in strongly correlated materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源