论文标题
智能车辆系统和智能城市的5G自适应网络切片的深度加强学习
Deep Reinforcement Learning for Adaptive Network Slicing in 5G for Intelligent Vehicular Systems and Smart Cities
论文作者
论文摘要
智能车辆系统和智能城市应用是增长最快的物联网(IoT)实施的,复利的年增长率为30%。鉴于物联网设备的最新进展以及由人工智能(AI)驱动的新型物联网应用的新产品,最近引入了FOG无线电访问网络(F-RAN)的第五代(5G)无线通信,以克服Cloud-Ran(C-Ran)的潜伏期限制。我们考虑将网络边缘(FOG节点)的有限资源分配给具有异质延迟和计算需求的车辆和智能城市用户的网络切片问题。我们开发了一个基于与边缘控制器(EC)协调的雾节点(FNS)集群的网络切片模型,以有效利用网络边缘的有限资源。对于集群中的每个服务请求,EC决定执行任务的FN,即在边缘上局部服务请求,或拒绝任务并将其引用到云。我们将问题提出为无限 - 马尔可夫决策过程(MDP),并提出了深入的增强学习(DRL)解决方案,以适应性地学习最佳切片策略。通过将基于DRL的切片方法的性能与动态环境中的其他切片方法和设计目标的不同场景进行比较,可以评估该方法的性能。全面的仿真结果证实了拟议的基于DRL的EC迅速通过与环境互动来了解最佳政策,从而使自适应和自动化的网络切片切片在动态车辆和智能的城市环境中有效地分配了有效的资源分配。
Intelligent vehicular systems and smart city applications are the fastest growing Internet of things (IoT) implementations at a compound annual growth rate of 30%. In view of the recent advances in IoT devices and the emerging new breed of IoT applications driven by artificial intelligence (AI), fog radio access network (F-RAN) has been recently introduced for the fifth generation (5G) wireless communications to overcome the latency limitations of cloud-RAN (C-RAN). We consider the network slicing problem of allocating the limited resources at the network edge (fog nodes) to vehicular and smart city users with heterogeneous latency and computing demands in dynamic environments. We develop a network slicing model based on a cluster of fog nodes (FNs) coordinated with an edge controller (EC) to efficiently utilize the limited resources at the network edge. For each service request in a cluster, the EC decides which FN to execute the task, i.e., locally serve the request at the edge, or to reject the task and refer it to the cloud. We formulate the problem as infinite-horizon Markov decision process (MDP) and propose a deep reinforcement learning (DRL) solution to adaptively learn the optimal slicing policy. The performance of the proposed DRL-based slicing method is evaluated by comparing it with other slicing approaches in dynamic environments and for different scenarios of design objectives. Comprehensive simulation results corroborate that the proposed DRL-based EC quickly learns the optimal policy through interaction with the environment, which enables adaptive and automated network slicing for efficient resource allocation in dynamic vehicular and smart city environments.