论文标题
车辆可见的光定位,以避免碰撞和排成碰撞:一项调查
Vehicular Visible Light Positioning for Collision Avoidance and Platooning: A Survey
论文作者
论文摘要
相对车辆定位方法可以通过避免碰撞和排量应用来帮助更安全,更有效的自动驾驶。对于完整的自动化,这些应用需要CM级定位精度和大于50 Hz的更新率。由于基于传感器的方法(例如Lidar,相机)在到目前为止的所有条件下都无法可靠地满足这些要求,因此寻求互补的方法。最近,基于车头/尾灯LED灯(VLP)的可见光通信信号(VLP)的定位已显示出很大的希望,作为在现实驾驶场景中达到CM级准确性和接近KHz速率的补充方法。车辆VLP方法基于从板载光电二极管接收的信号和基于这些测量值的估算发射机相对位置测量发射机(即头部/尾灯)的相对轴承(角度)或范围(距离)。在这项调查中,我们首先审查了现有的车辆VLP方法,并提出了一种新方法,该方法在定位性能方面提高了最先进的方法。接下来,我们分析了在挑战性的噪音和天气条件下,实际不对称的光束图案以及不同的车辆尺寸和光线位置的现实驾驶场景中所有方法的理论和模拟性能。我们的仿真结果表明,新提出的VLP方法是总体表现最好的人,并且确实可以满足避免碰撞碰撞和排量应用程序在实际约束中的定位的准确性和费率要求。最后,我们讨论了在汽车领域部署VLP解决方案以及进一步研究问题所面临的剩余公开挑战。
Relative vehicle positioning methods can contribute to safer and more efficient autonomous driving by enabling collision avoidance and platooning applications. For full automation, these applications require cm-level positioning accuracy and greater than 50 Hz update rate. Since sensor-based methods (e.g., LIDAR, cameras) have not been able to reliably satisfy these requirements under all conditions so far, complementary methods are sought. Recently, positioning based on visible light communication signals from vehicle head/tail LED lights (VLP) has shown significant promise as a complementary method attaining cm-level accuracy and near-kHz rate in realistic driving scenarios. Vehicular VLP methods measure relative bearing (angle) or range (distance) of transmitters (i.e., head/tail lights) based on received signals from on-board photodiodes and estimate transmitter relative positions based on those measurements. In this survey, we first review existing vehicular VLP methods and propose a new method that advances the state-of-the-art in positioning performance. Next, we analyze the theoretical and simulated performance of all methods in realistic driving scenarios under challenging noise and weather conditions, real asymmetric light beam patterns and different vehicle dimensions and light placements. Our simulation results show that the newly proposed VLP method is the overall best performer, and can indeed satisfy the accuracy and rate requirements for localization in collision avoidance and platooning applications within practical constraints. Finally, we discuss remaining open challenges that are faced for the deployment of VLP solutions in the automotive sector and further research questions.