论文标题
几何框架可预测神经网络功能的结构
Geometric framework to predict structure from function in neural networks
论文作者
论文摘要
生物和人工网络中的神经计算取决于许多输入的非线性总和。神经元之间突触权重的结构连通性矩阵是整体网络功能的关键决定因素,但是神经网络结构与功能之间的定量联系是复杂而微妙的。例如,许多网络可以产生相似的功能响应,并且相同的网络可以根据上下文的方式不同。是否需要某些突触连接的模式来生成特定的网络级计算是未知的。在这里,我们介绍了一个几何框架,用于识别阈值线性神经元的复发网络中稳态响应所需的突触连接。假设指定的响应模式的数量不超过输入突触的数量,我们可以分析计算所有可以从网络输入中生成指定响应的馈电和复发连接矩阵的解决方案空间。噪声的概括进一步表明,解决方案空间几何形状可以随着允许误差的增加而进行拓扑转换,这可以提供对神经科学和机器学习的见解。我们最终使用这种几何表征来得出确保神经元之间非零突触的确定性条件。因此,我们的理论框架可以应用于神经活动数据,以对通常由模型结构进行严格的解剖学预测。
Neural computation in biological and artificial networks relies on the nonlinear summation of many inputs. The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function, but quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of threshold-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate the solution space of all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. A generalization accounting for noise further reveals that the solution space geometry can undergo topological transitions as the allowed error increases, which could provide insight into both neuroscience and machine learning. We ultimately use this geometric characterization to derive certainty conditions guaranteeing a non-zero synapse between neurons. Our theoretical framework could thus be applied to neural activity data to make rigorous anatomical predictions that follow generally from the model architecture.