论文标题

椭圆形的三角形中心的有趣不变

Intriguing Invariants of Centers of Ellipse-Inscribed Triangles

论文作者

Helman, Mark, Garcia, Ronaldo, Reznik, Dan

论文摘要

我们描述了椭圆形的三角族中心的不变式,其两个顶点固定在椭圆边界上​​,第三个扫除了它。我们证明:(i)如果三角形中心是barycenter and ortheCenter的固定仿射组合,则其位点是椭圆形; (ii)以及上述仿产组合的家族,上述基因座的中心横扫了一条线; (iii)在平行固定顶点的家族上,Loci刚刚沿第二行翻译。此外,我们研究了椭圆基因座的包膜的不变性,这是椭圆上两个固定顶点的组合。

We describe invariants of centers of ellipse-inscribed triangle families with two vertices fixed to the ellipse boundary and a third one which sweeps it. We prove that: (i) if a triangle center is a fixed affine combination of barycenter and orthocenter, its locus is an ellipse; (ii) and that over the family of said affine combinations, the centers of said loci sweep a line; (iii) over the family of parallel fixed vertices, said loci rigidly translate along a second line. Additionally, we study invariants of the envelope of elliptic loci over combinations of two fixed vertices on the ellipse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源