论文标题

在动机同义和本地术语中进行跟踪地图

Trace maps in motivic homotopy and local terms

论文作者

Jin, Fangzhou

论文摘要

我们为一般基础方案的动机稳定同型类别中的每个共同体学对应定义了痕量图,该方案在扭曲的双变量基团中取值。对痕量图的本地贡献产生了经典本地术语的二次改进,以及一些$ \ mathbb {a}^1 $ - 增强不变性,例如本地$ \ mathbb {a}^a}^1 $ - brouwer学位和带有支持的Euler类,可以按本地解释。我们证明了Varshavsky定理的类似物,该定理指出,对于合同的信件,本地术语与幼稚的当地条款一致。

We define a trace map for every cohomological correspondence in the motivic stable homotopy category over a general base scheme, which takes values in the twisted bivariant groups. Local contributions to the trace map give rise to quadratic refinements of the classical local terms, and some $\mathbb{A}^1$-enumerative invariants, such as the local $\mathbb{A}^1$-Brouwer degree and the Euler class with support, can be interpreted as local terms. We prove an analogue of a theorem of Varshavsky, which states that for a contracting correspondence, the local terms agree with the naive local terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源