论文标题

扭曲分区的一致性及其晶格的属性

Properties of congruences of twisted partition monoids and their lattices

论文作者

East, James, Ruskuc, Nik

论文摘要

We build on the recent characterisation of congruences on the infinite twisted partition monoids $\mathcal{P}_{n}^Φ$ and their finite $d$-twisted homomorphic images $\mathcal{P}_{n,d}^Φ$, and investigate their algebraic and order-theoretic properties.我们证明,$ \ Mathcal {p} _ {n}^φ$的每个一致性(有限)最多是由$ \ lceil \ frac {5n} 2 \ rceil $ Pairs生成的,我们表征了主要的。我们还证明,一致性晶格$ \ textsf {cong}(\ mathcal {p} _ {n}^φ)$不是模块化(或分配);它没有无限上升的链条,但确实具有无限的下降链和无限的敌人。相比之下,晶格$ \ textsf {cong}(\ Mathcal {p} _ {n,d}^φ)$是模块化的,但仍未分配$ d> 0 $,而$ \ textsf {cong}(\ natercal {\ nathcal {p} _ {n,0} _ {n,0}^φ)$是分配。我们还计算了$ \ MATHCAL {p} _ {n,d}^φ$的一致性,表明数组$ \ big(| \ textsf {cong}(\ Mathcal {p} _ {p} _ {n,d}^φ) $ d $,$ | \ textsf {cong}(\ Mathcal {p} _ {n,d}^φ)| $分别是$ d $或$ n \ geq 4 $中的多项式。

We build on the recent characterisation of congruences on the infinite twisted partition monoids $\mathcal{P}_{n}^Φ$ and their finite $d$-twisted homomorphic images $\mathcal{P}_{n,d}^Φ$, and investigate their algebraic and order-theoretic properties. We prove that each congruence of $\mathcal{P}_{n}^Φ$ is (finitely) generated by at most $\lceil\frac{5n}2\rceil$ pairs, and we characterise the principal ones. We also prove that the congruence lattice $\textsf{Cong}(\mathcal{P}_{n}^Φ)$ is not modular (or distributive); it has no infinite ascending chains, but it does have infinite descending chains and infinite antichains. By way of contrast, the lattice $\textsf{Cong}(\mathcal{P}_{n,d}^Φ)$ is modular but still not distributive for $d>0$, while $\textsf{Cong}(\mathcal{P}_{n,0}^Φ)$ is distributive. We also calculate the number of congruences of $\mathcal{P}_{n,d}^Φ$, showing that the array $\big(|\textsf{Cong}(\mathcal{P}_{n,d}^Φ)|\big)_{n,d\geq 0}$ has a rational generating function, and that for a fixed $n$ or $d$, $|\textsf{Cong}(\mathcal{P}_{n,d}^Φ)|$ is a polynomial in $d$ or $n\geq 4$, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源