论文标题

与加速相对论二进制风的中子星星合并的电动无线电前体

Shock-powered radio precursors of neutron star mergers from accelerating relativistic binary winds

论文作者

Sridhar, Navin, Zrake, Jonathan, Metzger, Brian D., Sironi, Lorenzo, Giannios, Dimitrios

论文摘要

在紧凑型物体合并的最后阶段,如果至少一个二进制组件是磁化的中子恒星(NS),则其轨道运动基本上会扩大NS的开放磁通量 - 因此,相对于隔离的Pulsar的旋转磁力,则增加了其风亮度。由于引力辐射引起的二进制轨道缩小,这种二进制引起的灵感风的功率和速度可能会(取决于配对的不同),从而导致自相互作用和二进制轨道以外的流出中的内部冲击。磁化的正向冲击可以通过同步加速器MASER工艺产生相干的无线电发射,从而导致可观察到的无线电前体的二进制NS合并。假设Inspiral风能有效地将其po循环转换为散装动能,则我们在加速二进制NS风中对休克相互作用进行1D相对论流体动力学模拟。这与来自粒子中的粒子模拟的冲击摩尔光谱结合在一起,以生成合成的无线电曲线。前体的流动性为$ \ sim1 $ jy $ \ cdot $ ms at $ \ sim $ ghz频率持续$ \ sim 1-500 $ ms,在与源以$ \ sim3 $ gpc($ b _ {$ b _ {\ rm d} $ gpc($ b _ {\ rm d}/10^{12} $ g)的合并后,更强烈磁化的恒星的偶极磁场强度。鉴于沿二进制赤道集中的流出几何形状,该信号对于高倾斜系统来说优先可观察到,即最不可能产生可检测到的伽马射线爆发的信号。

During the final stages of a compact object merger, if at least one of the binary components is a magnetized neutron star (NS), then its orbital motion substantially expands the NS's open magnetic flux -- and hence increases its wind luminosity -- relative to that of an isolated pulsar. As the binary orbit shrinks due to gravitational radiation, the power and speed of this binary-induced inspiral wind may (depending on pair loading) secularly increase, leading to self-interaction and internal shocks in the outflow beyond the binary orbit. The magnetized forward shock can generate coherent radio emission via the synchrotron maser process, resulting in an observable radio precursor to binary NS merger. We perform 1D relativistic hydrodynamical simulations of shock interaction in the accelerating binary NS wind, assuming that the inspiral wind efficiently converts its Poynting flux into bulk kinetic energy prior to the shock radius. This is combined with the shock maser spectrum from particle-in-cell simulations, to generate synthetic radio light curves. The precursor burst with a fluence of $\sim1$ Jy$\cdot$ms at $\sim$GHz frequencies lasts $\sim 1-500$ ms following the merger for a source at $\sim3$ Gpc ($B_{\rm d}/10^{12}$ G)$^{8/9}$, where $B_{\rm d}$ is the dipole field strength of the more strongly-magnetized star. Given an outflow geometry concentrated along the binary equatorial, the signal may be preferentially observable for high-inclination systems, i.e. those least likely to produce a detectable gamma-ray burst.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源