论文标题

贝叶斯量子多相估计算法

Bayesian Quantum Multiphase Estimation Algorithm

论文作者

Gebhart, Valentin, Smerzi, Augusto, Pezzè, Luca

论文摘要

量子相估计(QPE)是几种量子计算算法的关键子例程,也是量子计算化学和量子模拟中的中心成分。尽管QPE策略的重点是对单个阶段的估计,但同时估算几个阶段的应用可能带来很大的优势。例如,在存在空间或时间约束的情况下。在这项工作中,我们研究了一种贝叶斯算法,用于对多个任意阶段的平行(同时)估计。该协议可访问贝叶斯多相分布中的相关性,从而导致协方差矩阵元素与量子总数的平方成反比。并行估计可以超过对相对相的最佳线性组合的顺序单相估计策略的灵敏度。此外,该算法证明了一定的噪声弹性,并且可以在当前可访问的实验中使用单个光子和标准光学元素实现。

Quantum phase estimation (QPE) is the key subroutine of several quantum computing algorithms as well as a central ingredient in quantum computational chemistry and quantum simulation. While QPE strategies have focused on the estimation of a single phase, applications to the simultaneous estimation of several phases may bring substantial advantages; for instance, in the presence of spatial or temporal constraints. In this work, we study a Bayesian algorithm for the parallel (simultaneous) estimation of multiple arbitrary phases. The protocol gives access to correlations in the Bayesian multi-phase distribution resulting in covariance matrix elements scaling inversely proportional to the square of the total number of quantum resources. The parallel estimation allows to surpass the sensitivity of sequential single-phase estimation strategies for optimal linear combinations of phases. Furthermore, the algorithm proves a certain noise resilience and can be implemented using single photons and standard optical elements in currently accessible experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源