论文标题

太阳光球中动荡对流的功率谱

Power spectrum of turbulent convection in the solar photosphere

论文作者

Chaouche, L. Yelles, Cameron, R. H., Solanki, S. K., Riethmüller, T. L., Anusha, L. S., Witzke, V., Shapiro, A. I., Barthol, P., Gandorfer, A., Gizon, L., Hirzberger, J., van Noort, M., Rodríguez, J. Blanco, Iniesta, J. C. Del Toro, Suárez, D. Orozco, Schmidt, W., Pillet, V. Martínez, Knölker, M.

论文摘要

太阳光球为我们提供了一个实验室,可以在一个层中理解湍流,在该层中,转运的基本过程迅速变化,并且极端绝热的区域与亚绝热层非常紧密。我们探测湍流的工具是高分辨率光谱观察结果,例如最近通过两个日出任务获得的,以及数值模拟。我们的目的是在观测和模拟中计算出的傅立叶功率光谱来研究光球湍流。我们还试图借助其管理方程式和仿真来解释光球超旋流流的某些属性。我们发现,在其多普勒速度功率谱的亚晶范围内,安静的观测和涂抹模拟表现出幂律行为,指数为$〜\ \ -2 $。未修复的模拟显示$〜\ \ \约-2.25 $的幂律指数。涂抹大大降低了光谱的幂律样部分的程度。因此,在某些观察结果中的空间分辨率有限可能最终导致估计幂律指数的不确定性。 模拟的垂直速度功率光谱随着高度的函数,显示了幂律指数从太阳能表面到上方$ 300 $〜km的迅速变化。发生垂直动量的比例依赖性传输。在较小的尺度下,垂直动量比在较大尺度上更有效地侧向运输。这会导致垂直速度功率低于较小的尺度,而在较大的尺度上,垂直速度的运输速度较小,并且在$ 180 $公里以下的垂直速度功率定律逐渐陡峭。在此高度之上,重力工作在所有尺度上都逐渐变得重要,从而使大气逐渐静水,并导致逐渐陡峭的功率定律。

The solar photosphere provides us with a laboratory for understanding turbulence in a layer where the fundamental processes of transport vary rapidly and a strongly superadiabatic region lies very closely to a subadiabatic layer. Our tools for probing the turbulence are high-resolution spectropolarimetric observations such as have recently been obtained with the two sunrise missions, and numerical simulations. Our aim is to study photospheric turbulence with the help of Fourier power spectra that we compute from observations and simulations. We also attempt to explain some properties of the photospheric overshooting flow with the help of its governing equations and simulations. We find that quiet-Sun observations and smeared simulations exhibit a power-law behavior in the subgranular range of their Doppler velocity power spectra with an index of$~\approx -2$. The unsmeared simulations exhibit a power-law index of$~\approx -2.25$. The smearing considerably reduces the extent of the power-law-like portion of the spectra. Therefore, the limited spatial resolution in some observations might eventually result in larger uncertainties in the estimation of the power-law indices. The simulated vertical velocity power spectra as a function of height show a rapid change in the power-law index from the solar surface to $300$~km above it. A scale-dependent transport of the vertical momentum occurs. At smaller scales, the vertical momentum is more efficiently transported sideways than at larger scales. This results in less vertical velocity power transported upward at small scales than at larger scales and produces a progressively steeper vertical velocity power law below $180$ km. Above this height, the gravity work progressively gains importance at all scales, making the atmosphere progressively more hydrostatic and resulting in a gradually less steep power law.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源